| Step |
Hyp |
Ref |
Expression |
| 1 |
|
logcn.d |
|
| 2 |
|
logcnlem.s |
|
| 3 |
|
logcnlem.t |
|
| 4 |
|
logcnlem.a |
|
| 5 |
|
logcnlem.r |
|
| 6 |
|
simpr |
|
| 7 |
1
|
ellogdm |
|
| 8 |
7
|
simplbi |
|
| 9 |
4 8
|
syl |
|
| 10 |
9
|
imcld |
|
| 11 |
10
|
adantr |
|
| 12 |
11
|
recnd |
|
| 13 |
|
reim0b |
|
| 14 |
9 13
|
syl |
|
| 15 |
7
|
simprbi |
|
| 16 |
4 15
|
syl |
|
| 17 |
14 16
|
sylbird |
|
| 18 |
17
|
necon3bd |
|
| 19 |
18
|
imp |
|
| 20 |
12 19
|
absrpcld |
|
| 21 |
6 20
|
ifclda |
|
| 22 |
2 21
|
eqeltrid |
|
| 23 |
1
|
logdmn0 |
|
| 24 |
4 23
|
syl |
|
| 25 |
9 24
|
absrpcld |
|
| 26 |
|
1rp |
|
| 27 |
|
rpaddcl |
|
| 28 |
26 5 27
|
sylancr |
|
| 29 |
5 28
|
rpdivcld |
|
| 30 |
25 29
|
rpmulcld |
|
| 31 |
3 30
|
eqeltrid |
|
| 32 |
22 31
|
ifcld |
|