Metamath Proof Explorer


Theorem rpaddcl

Description: Closure law for addition of positive reals. Part of Axiom 7 of Apostol p. 20. (Contributed by NM, 27-Oct-2007)

Ref Expression
Assertion rpaddcl A+B+A+B+

Proof

Step Hyp Ref Expression
1 rpre A+A
2 rpre B+B
3 readdcl ABA+B
4 1 2 3 syl2an A+B+A+B
5 elrp A+A0<A
6 elrp B+B0<B
7 addgt0 AB0<A0<B0<A+B
8 7 an4s A0<AB0<B0<A+B
9 5 6 8 syl2anb A+B+0<A+B
10 elrp A+B+A+B0<A+B
11 4 9 10 sylanbrc A+B+A+B+