Step |
Hyp |
Ref |
Expression |
1 |
|
logcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
2 |
1
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
3 |
|
relogcl |
⊢ ( 𝐵 ∈ ℝ+ → ( log ‘ 𝐵 ) ∈ ℝ ) |
4 |
3
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( log ‘ 𝐵 ) ∈ ℝ ) |
5 |
4
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( log ‘ 𝐵 ) ∈ ℂ ) |
6 |
|
efsub |
⊢ ( ( ( log ‘ 𝐴 ) ∈ ℂ ∧ ( log ‘ 𝐵 ) ∈ ℂ ) → ( exp ‘ ( ( log ‘ 𝐴 ) − ( log ‘ 𝐵 ) ) ) = ( ( exp ‘ ( log ‘ 𝐴 ) ) / ( exp ‘ ( log ‘ 𝐵 ) ) ) ) |
7 |
2 5 6
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( exp ‘ ( ( log ‘ 𝐴 ) − ( log ‘ 𝐵 ) ) ) = ( ( exp ‘ ( log ‘ 𝐴 ) ) / ( exp ‘ ( log ‘ 𝐵 ) ) ) ) |
8 |
|
eflog |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) |
9 |
8
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) |
10 |
|
reeflog |
⊢ ( 𝐵 ∈ ℝ+ → ( exp ‘ ( log ‘ 𝐵 ) ) = 𝐵 ) |
11 |
10
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( exp ‘ ( log ‘ 𝐵 ) ) = 𝐵 ) |
12 |
9 11
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( ( exp ‘ ( log ‘ 𝐴 ) ) / ( exp ‘ ( log ‘ 𝐵 ) ) ) = ( 𝐴 / 𝐵 ) ) |
13 |
7 12
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( exp ‘ ( ( log ‘ 𝐴 ) − ( log ‘ 𝐵 ) ) ) = ( 𝐴 / 𝐵 ) ) |
14 |
13
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( log ‘ ( exp ‘ ( ( log ‘ 𝐴 ) − ( log ‘ 𝐵 ) ) ) ) = ( log ‘ ( 𝐴 / 𝐵 ) ) ) |
15 |
2 5
|
negsubd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( ( log ‘ 𝐴 ) + - ( log ‘ 𝐵 ) ) = ( ( log ‘ 𝐴 ) − ( log ‘ 𝐵 ) ) ) |
16 |
|
logrncl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ran log ) |
17 |
16
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( log ‘ 𝐴 ) ∈ ran log ) |
18 |
4
|
renegcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → - ( log ‘ 𝐵 ) ∈ ℝ ) |
19 |
|
logrnaddcl |
⊢ ( ( ( log ‘ 𝐴 ) ∈ ran log ∧ - ( log ‘ 𝐵 ) ∈ ℝ ) → ( ( log ‘ 𝐴 ) + - ( log ‘ 𝐵 ) ) ∈ ran log ) |
20 |
17 18 19
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( ( log ‘ 𝐴 ) + - ( log ‘ 𝐵 ) ) ∈ ran log ) |
21 |
15 20
|
eqeltrrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( ( log ‘ 𝐴 ) − ( log ‘ 𝐵 ) ) ∈ ran log ) |
22 |
|
logef |
⊢ ( ( ( log ‘ 𝐴 ) − ( log ‘ 𝐵 ) ) ∈ ran log → ( log ‘ ( exp ‘ ( ( log ‘ 𝐴 ) − ( log ‘ 𝐵 ) ) ) ) = ( ( log ‘ 𝐴 ) − ( log ‘ 𝐵 ) ) ) |
23 |
21 22
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( log ‘ ( exp ‘ ( ( log ‘ 𝐴 ) − ( log ‘ 𝐵 ) ) ) ) = ( ( log ‘ 𝐴 ) − ( log ‘ 𝐵 ) ) ) |
24 |
14 23
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( log ‘ ( 𝐴 / 𝐵 ) ) = ( ( log ‘ 𝐴 ) − ( log ‘ 𝐵 ) ) ) |