| Step |
Hyp |
Ref |
Expression |
| 1 |
|
divcnvshft.1 |
|- Z = ( ZZ>= ` M ) |
| 2 |
|
divcnvshft.2 |
|- ( ph -> M e. ZZ ) |
| 3 |
|
divcnvshft.3 |
|- ( ph -> A e. CC ) |
| 4 |
|
divcnvshft.4 |
|- ( ph -> B e. ZZ ) |
| 5 |
|
divcnvshft.5 |
|- ( ph -> F e. V ) |
| 6 |
|
divcnvshft.6 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = ( A / ( k + B ) ) ) |
| 7 |
|
divcnv |
|- ( A e. CC -> ( m e. NN |-> ( A / m ) ) ~~> 0 ) |
| 8 |
3 7
|
syl |
|- ( ph -> ( m e. NN |-> ( A / m ) ) ~~> 0 ) |
| 9 |
|
nnssz |
|- NN C_ ZZ |
| 10 |
|
resmpt |
|- ( NN C_ ZZ -> ( ( m e. ZZ |-> ( A / m ) ) |` NN ) = ( m e. NN |-> ( A / m ) ) ) |
| 11 |
9 10
|
ax-mp |
|- ( ( m e. ZZ |-> ( A / m ) ) |` NN ) = ( m e. NN |-> ( A / m ) ) |
| 12 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 13 |
12
|
reseq2i |
|- ( ( m e. ZZ |-> ( A / m ) ) |` NN ) = ( ( m e. ZZ |-> ( A / m ) ) |` ( ZZ>= ` 1 ) ) |
| 14 |
11 13
|
eqtr3i |
|- ( m e. NN |-> ( A / m ) ) = ( ( m e. ZZ |-> ( A / m ) ) |` ( ZZ>= ` 1 ) ) |
| 15 |
14
|
breq1i |
|- ( ( m e. NN |-> ( A / m ) ) ~~> 0 <-> ( ( m e. ZZ |-> ( A / m ) ) |` ( ZZ>= ` 1 ) ) ~~> 0 ) |
| 16 |
|
1z |
|- 1 e. ZZ |
| 17 |
|
zex |
|- ZZ e. _V |
| 18 |
17
|
mptex |
|- ( m e. ZZ |-> ( A / m ) ) e. _V |
| 19 |
|
climres |
|- ( ( 1 e. ZZ /\ ( m e. ZZ |-> ( A / m ) ) e. _V ) -> ( ( ( m e. ZZ |-> ( A / m ) ) |` ( ZZ>= ` 1 ) ) ~~> 0 <-> ( m e. ZZ |-> ( A / m ) ) ~~> 0 ) ) |
| 20 |
16 18 19
|
mp2an |
|- ( ( ( m e. ZZ |-> ( A / m ) ) |` ( ZZ>= ` 1 ) ) ~~> 0 <-> ( m e. ZZ |-> ( A / m ) ) ~~> 0 ) |
| 21 |
15 20
|
bitri |
|- ( ( m e. NN |-> ( A / m ) ) ~~> 0 <-> ( m e. ZZ |-> ( A / m ) ) ~~> 0 ) |
| 22 |
8 21
|
sylib |
|- ( ph -> ( m e. ZZ |-> ( A / m ) ) ~~> 0 ) |
| 23 |
18
|
a1i |
|- ( ph -> ( m e. ZZ |-> ( A / m ) ) e. _V ) |
| 24 |
|
uzssz |
|- ( ZZ>= ` M ) C_ ZZ |
| 25 |
1 24
|
eqsstri |
|- Z C_ ZZ |
| 26 |
25
|
sseli |
|- ( k e. Z -> k e. ZZ ) |
| 27 |
26
|
adantl |
|- ( ( ph /\ k e. Z ) -> k e. ZZ ) |
| 28 |
4
|
adantr |
|- ( ( ph /\ k e. Z ) -> B e. ZZ ) |
| 29 |
27 28
|
zaddcld |
|- ( ( ph /\ k e. Z ) -> ( k + B ) e. ZZ ) |
| 30 |
|
oveq2 |
|- ( m = ( k + B ) -> ( A / m ) = ( A / ( k + B ) ) ) |
| 31 |
|
eqid |
|- ( m e. ZZ |-> ( A / m ) ) = ( m e. ZZ |-> ( A / m ) ) |
| 32 |
|
ovex |
|- ( A / ( k + B ) ) e. _V |
| 33 |
30 31 32
|
fvmpt |
|- ( ( k + B ) e. ZZ -> ( ( m e. ZZ |-> ( A / m ) ) ` ( k + B ) ) = ( A / ( k + B ) ) ) |
| 34 |
29 33
|
syl |
|- ( ( ph /\ k e. Z ) -> ( ( m e. ZZ |-> ( A / m ) ) ` ( k + B ) ) = ( A / ( k + B ) ) ) |
| 35 |
34 6
|
eqtr4d |
|- ( ( ph /\ k e. Z ) -> ( ( m e. ZZ |-> ( A / m ) ) ` ( k + B ) ) = ( F ` k ) ) |
| 36 |
1 2 4 5 23 35
|
climshft2 |
|- ( ph -> ( F ~~> 0 <-> ( m e. ZZ |-> ( A / m ) ) ~~> 0 ) ) |
| 37 |
22 36
|
mpbird |
|- ( ph -> F ~~> 0 ) |