Metamath Proof Explorer


Theorem gamf

Description: The Gamma function is a complex function defined on the whole complex plane except for the negative integers. (Contributed by Mario Carneiro, 6-Jul-2017)

Ref Expression
Assertion gamf Γ : ( ℂ ∖ ( ℤ ∖ ℕ ) ) ⟶ ℂ

Proof

Step Hyp Ref Expression
1 eff exp : ℂ ⟶ ℂ
2 lgamf log Γ : ( ℂ ∖ ( ℤ ∖ ℕ ) ) ⟶ ℂ
3 fco ( ( exp : ℂ ⟶ ℂ ∧ log Γ : ( ℂ ∖ ( ℤ ∖ ℕ ) ) ⟶ ℂ ) → ( exp ∘ log Γ ) : ( ℂ ∖ ( ℤ ∖ ℕ ) ) ⟶ ℂ )
4 1 2 3 mp2an ( exp ∘ log Γ ) : ( ℂ ∖ ( ℤ ∖ ℕ ) ) ⟶ ℂ
5 df-gam Γ = ( exp ∘ log Γ )
6 5 feq1i ( Γ : ( ℂ ∖ ( ℤ ∖ ℕ ) ) ⟶ ℂ ↔ ( exp ∘ log Γ ) : ( ℂ ∖ ( ℤ ∖ ℕ ) ) ⟶ ℂ )
7 4 6 mpbir Γ : ( ℂ ∖ ( ℤ ∖ ℕ ) ) ⟶ ℂ