Description: The Gamma function is a complex function defined on the whole complex plane except for the negative integers. (Contributed by Mario Carneiro, 6-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gamf | ⊢ Γ : ( ℂ ∖ ( ℤ ∖ ℕ ) ) ⟶ ℂ | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eff | ⊢ exp : ℂ ⟶ ℂ | |
| 2 | lgamf | ⊢ log Γ : ( ℂ ∖ ( ℤ ∖ ℕ ) ) ⟶ ℂ | |
| 3 | fco | ⊢ ( ( exp : ℂ ⟶ ℂ ∧ log Γ : ( ℂ ∖ ( ℤ ∖ ℕ ) ) ⟶ ℂ ) → ( exp ∘ log Γ ) : ( ℂ ∖ ( ℤ ∖ ℕ ) ) ⟶ ℂ ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( exp ∘ log Γ ) : ( ℂ ∖ ( ℤ ∖ ℕ ) ) ⟶ ℂ | 
| 5 | df-gam | ⊢ Γ = ( exp ∘ log Γ ) | |
| 6 | 5 | feq1i | ⊢ ( Γ : ( ℂ ∖ ( ℤ ∖ ℕ ) ) ⟶ ℂ ↔ ( exp ∘ log Γ ) : ( ℂ ∖ ( ℤ ∖ ℕ ) ) ⟶ ℂ ) | 
| 7 | 4 6 | mpbir | ⊢ Γ : ( ℂ ∖ ( ℤ ∖ ℕ ) ) ⟶ ℂ |