| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isgbe |  |-  ( Z e. GoldbachEven <-> ( Z e. Even /\ E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ Z = ( p + q ) ) ) ) | 
						
							| 2 |  | prmnn |  |-  ( p e. Prime -> p e. NN ) | 
						
							| 3 |  | prmnn |  |-  ( q e. Prime -> q e. NN ) | 
						
							| 4 |  | nnaddcl |  |-  ( ( p e. NN /\ q e. NN ) -> ( p + q ) e. NN ) | 
						
							| 5 | 2 3 4 | syl2an |  |-  ( ( p e. Prime /\ q e. Prime ) -> ( p + q ) e. NN ) | 
						
							| 6 |  | eleq1 |  |-  ( Z = ( p + q ) -> ( Z e. NN <-> ( p + q ) e. NN ) ) | 
						
							| 7 | 5 6 | imbitrrid |  |-  ( Z = ( p + q ) -> ( ( p e. Prime /\ q e. Prime ) -> Z e. NN ) ) | 
						
							| 8 | 7 | 3ad2ant3 |  |-  ( ( p e. Odd /\ q e. Odd /\ Z = ( p + q ) ) -> ( ( p e. Prime /\ q e. Prime ) -> Z e. NN ) ) | 
						
							| 9 | 8 | com12 |  |-  ( ( p e. Prime /\ q e. Prime ) -> ( ( p e. Odd /\ q e. Odd /\ Z = ( p + q ) ) -> Z e. NN ) ) | 
						
							| 10 | 9 | a1i |  |-  ( Z e. Even -> ( ( p e. Prime /\ q e. Prime ) -> ( ( p e. Odd /\ q e. Odd /\ Z = ( p + q ) ) -> Z e. NN ) ) ) | 
						
							| 11 | 10 | rexlimdvv |  |-  ( Z e. Even -> ( E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ Z = ( p + q ) ) -> Z e. NN ) ) | 
						
							| 12 | 11 | imp |  |-  ( ( Z e. Even /\ E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ Z = ( p + q ) ) ) -> Z e. NN ) | 
						
							| 13 | 1 12 | sylbi |  |-  ( Z e. GoldbachEven -> Z e. NN ) |