| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isgbe | ⊢ ( 𝑍  ∈   GoldbachEven   ↔  ( 𝑍  ∈   Even   ∧  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑍  =  ( 𝑝  +  𝑞 ) ) ) ) | 
						
							| 2 |  | prmnn | ⊢ ( 𝑝  ∈  ℙ  →  𝑝  ∈  ℕ ) | 
						
							| 3 |  | prmnn | ⊢ ( 𝑞  ∈  ℙ  →  𝑞  ∈  ℕ ) | 
						
							| 4 |  | nnaddcl | ⊢ ( ( 𝑝  ∈  ℕ  ∧  𝑞  ∈  ℕ )  →  ( 𝑝  +  𝑞 )  ∈  ℕ ) | 
						
							| 5 | 2 3 4 | syl2an | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  →  ( 𝑝  +  𝑞 )  ∈  ℕ ) | 
						
							| 6 |  | eleq1 | ⊢ ( 𝑍  =  ( 𝑝  +  𝑞 )  →  ( 𝑍  ∈  ℕ  ↔  ( 𝑝  +  𝑞 )  ∈  ℕ ) ) | 
						
							| 7 | 5 6 | imbitrrid | ⊢ ( 𝑍  =  ( 𝑝  +  𝑞 )  →  ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  →  𝑍  ∈  ℕ ) ) | 
						
							| 8 | 7 | 3ad2ant3 | ⊢ ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑍  =  ( 𝑝  +  𝑞 ) )  →  ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  →  𝑍  ∈  ℕ ) ) | 
						
							| 9 | 8 | com12 | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  →  ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑍  =  ( 𝑝  +  𝑞 ) )  →  𝑍  ∈  ℕ ) ) | 
						
							| 10 | 9 | a1i | ⊢ ( 𝑍  ∈   Even   →  ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  →  ( ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑍  =  ( 𝑝  +  𝑞 ) )  →  𝑍  ∈  ℕ ) ) ) | 
						
							| 11 | 10 | rexlimdvv | ⊢ ( 𝑍  ∈   Even   →  ( ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑍  =  ( 𝑝  +  𝑞 ) )  →  𝑍  ∈  ℕ ) ) | 
						
							| 12 | 11 | imp | ⊢ ( ( 𝑍  ∈   Even   ∧  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ( 𝑝  ∈   Odd   ∧  𝑞  ∈   Odd   ∧  𝑍  =  ( 𝑝  +  𝑞 ) ) )  →  𝑍  ∈  ℕ ) | 
						
							| 13 | 1 12 | sylbi | ⊢ ( 𝑍  ∈   GoldbachEven   →  𝑍  ∈  ℕ ) |