Metamath Proof Explorer


Theorem gbowpos

Description: Any weak odd Goldbach number is positive. (Contributed by AV, 20-Jul-2020)

Ref Expression
Assertion gbowpos ( 𝑍 ∈ GoldbachOddW → 𝑍 ∈ ℕ )

Proof

Step Hyp Ref Expression
1 isgbow ( 𝑍 ∈ GoldbachOddW ↔ ( 𝑍 ∈ Odd ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) )
2 prmnn ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ )
3 prmnn ( 𝑞 ∈ ℙ → 𝑞 ∈ ℕ )
4 2 3 anim12i ( ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) → ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) )
5 4 adantr ( ( ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) ∧ 𝑟 ∈ ℙ ) → ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) )
6 nnaddcl ( ( 𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ ) → ( 𝑝 + 𝑞 ) ∈ ℕ )
7 5 6 syl ( ( ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) ∧ 𝑟 ∈ ℙ ) → ( 𝑝 + 𝑞 ) ∈ ℕ )
8 prmnn ( 𝑟 ∈ ℙ → 𝑟 ∈ ℕ )
9 8 adantl ( ( ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) ∧ 𝑟 ∈ ℙ ) → 𝑟 ∈ ℕ )
10 7 9 nnaddcld ( ( ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) ∧ 𝑟 ∈ ℙ ) → ( ( 𝑝 + 𝑞 ) + 𝑟 ) ∈ ℕ )
11 eleq1 ( 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) → ( 𝑍 ∈ ℕ ↔ ( ( 𝑝 + 𝑞 ) + 𝑟 ) ∈ ℕ ) )
12 10 11 syl5ibrcom ( ( ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) ∧ 𝑟 ∈ ℙ ) → ( 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) → 𝑍 ∈ ℕ ) )
13 12 rexlimdva ( ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) → ( ∃ 𝑟 ∈ ℙ 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) → 𝑍 ∈ ℕ ) )
14 13 a1i ( 𝑍 ∈ Odd → ( ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) → ( ∃ 𝑟 ∈ ℙ 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) → 𝑍 ∈ ℕ ) ) )
15 14 rexlimdvv ( 𝑍 ∈ Odd → ( ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) → 𝑍 ∈ ℕ ) )
16 15 imp ( ( 𝑍 ∈ Odd ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑍 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) → 𝑍 ∈ ℕ )
17 1 16 sylbi ( 𝑍 ∈ GoldbachOddW → 𝑍 ∈ ℕ )