| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isgbow | ⊢ ( 𝑍  ∈   GoldbachOddW   ↔  ( 𝑍  ∈   Odd   ∧  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑍  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) | 
						
							| 2 |  | prmnn | ⊢ ( 𝑝  ∈  ℙ  →  𝑝  ∈  ℕ ) | 
						
							| 3 |  | prmnn | ⊢ ( 𝑞  ∈  ℙ  →  𝑞  ∈  ℕ ) | 
						
							| 4 | 2 3 | anim12i | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  →  ( 𝑝  ∈  ℕ  ∧  𝑞  ∈  ℕ ) ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  ∧  𝑟  ∈  ℙ )  →  ( 𝑝  ∈  ℕ  ∧  𝑞  ∈  ℕ ) ) | 
						
							| 6 |  | nnaddcl | ⊢ ( ( 𝑝  ∈  ℕ  ∧  𝑞  ∈  ℕ )  →  ( 𝑝  +  𝑞 )  ∈  ℕ ) | 
						
							| 7 | 5 6 | syl | ⊢ ( ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  ∧  𝑟  ∈  ℙ )  →  ( 𝑝  +  𝑞 )  ∈  ℕ ) | 
						
							| 8 |  | prmnn | ⊢ ( 𝑟  ∈  ℙ  →  𝑟  ∈  ℕ ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  ∧  𝑟  ∈  ℙ )  →  𝑟  ∈  ℕ ) | 
						
							| 10 | 7 9 | nnaddcld | ⊢ ( ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  ∧  𝑟  ∈  ℙ )  →  ( ( 𝑝  +  𝑞 )  +  𝑟 )  ∈  ℕ ) | 
						
							| 11 |  | eleq1 | ⊢ ( 𝑍  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  →  ( 𝑍  ∈  ℕ  ↔  ( ( 𝑝  +  𝑞 )  +  𝑟 )  ∈  ℕ ) ) | 
						
							| 12 | 10 11 | syl5ibrcom | ⊢ ( ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  ∧  𝑟  ∈  ℙ )  →  ( 𝑍  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  →  𝑍  ∈  ℕ ) ) | 
						
							| 13 | 12 | rexlimdva | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  →  ( ∃ 𝑟  ∈  ℙ 𝑍  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  →  𝑍  ∈  ℕ ) ) | 
						
							| 14 | 13 | a1i | ⊢ ( 𝑍  ∈   Odd   →  ( ( 𝑝  ∈  ℙ  ∧  𝑞  ∈  ℙ )  →  ( ∃ 𝑟  ∈  ℙ 𝑍  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  →  𝑍  ∈  ℕ ) ) ) | 
						
							| 15 | 14 | rexlimdvv | ⊢ ( 𝑍  ∈   Odd   →  ( ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑍  =  ( ( 𝑝  +  𝑞 )  +  𝑟 )  →  𝑍  ∈  ℕ ) ) | 
						
							| 16 | 15 | imp | ⊢ ( ( 𝑍  ∈   Odd   ∧  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑍  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) )  →  𝑍  ∈  ℕ ) | 
						
							| 17 | 1 16 | sylbi | ⊢ ( 𝑍  ∈   GoldbachOddW   →  𝑍  ∈  ℕ ) |