| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oddz |
|- ( Z e. Odd -> Z e. ZZ ) |
| 2 |
|
2z |
|- 2 e. ZZ |
| 3 |
|
gcdcom |
|- ( ( Z e. ZZ /\ 2 e. ZZ ) -> ( Z gcd 2 ) = ( 2 gcd Z ) ) |
| 4 |
1 2 3
|
sylancl |
|- ( Z e. Odd -> ( Z gcd 2 ) = ( 2 gcd Z ) ) |
| 5 |
|
2ndvdsodd |
|- ( Z e. Odd -> -. 2 || Z ) |
| 6 |
|
2prm |
|- 2 e. Prime |
| 7 |
|
coprm |
|- ( ( 2 e. Prime /\ Z e. ZZ ) -> ( -. 2 || Z <-> ( 2 gcd Z ) = 1 ) ) |
| 8 |
6 1 7
|
sylancr |
|- ( Z e. Odd -> ( -. 2 || Z <-> ( 2 gcd Z ) = 1 ) ) |
| 9 |
5 8
|
mpbid |
|- ( Z e. Odd -> ( 2 gcd Z ) = 1 ) |
| 10 |
4 9
|
eqtrd |
|- ( Z e. Odd -> ( Z gcd 2 ) = 1 ) |