| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oddz |  |-  ( Z e. Odd -> Z e. ZZ ) | 
						
							| 2 |  | 2z |  |-  2 e. ZZ | 
						
							| 3 |  | gcdcom |  |-  ( ( Z e. ZZ /\ 2 e. ZZ ) -> ( Z gcd 2 ) = ( 2 gcd Z ) ) | 
						
							| 4 | 1 2 3 | sylancl |  |-  ( Z e. Odd -> ( Z gcd 2 ) = ( 2 gcd Z ) ) | 
						
							| 5 |  | 2ndvdsodd |  |-  ( Z e. Odd -> -. 2 || Z ) | 
						
							| 6 |  | 2prm |  |-  2 e. Prime | 
						
							| 7 |  | coprm |  |-  ( ( 2 e. Prime /\ Z e. ZZ ) -> ( -. 2 || Z <-> ( 2 gcd Z ) = 1 ) ) | 
						
							| 8 | 6 1 7 | sylancr |  |-  ( Z e. Odd -> ( -. 2 || Z <-> ( 2 gcd Z ) = 1 ) ) | 
						
							| 9 | 5 8 | mpbid |  |-  ( Z e. Odd -> ( 2 gcd Z ) = 1 ) | 
						
							| 10 | 4 9 | eqtrd |  |-  ( Z e. Odd -> ( Z gcd 2 ) = 1 ) |