Step |
Hyp |
Ref |
Expression |
1 |
|
oddz |
|- ( Z e. Odd -> Z e. ZZ ) |
2 |
|
2z |
|- 2 e. ZZ |
3 |
|
gcdcom |
|- ( ( Z e. ZZ /\ 2 e. ZZ ) -> ( Z gcd 2 ) = ( 2 gcd Z ) ) |
4 |
1 2 3
|
sylancl |
|- ( Z e. Odd -> ( Z gcd 2 ) = ( 2 gcd Z ) ) |
5 |
|
2ndvdsodd |
|- ( Z e. Odd -> -. 2 || Z ) |
6 |
|
2prm |
|- 2 e. Prime |
7 |
|
coprm |
|- ( ( 2 e. Prime /\ Z e. ZZ ) -> ( -. 2 || Z <-> ( 2 gcd Z ) = 1 ) ) |
8 |
6 1 7
|
sylancr |
|- ( Z e. Odd -> ( -. 2 || Z <-> ( 2 gcd Z ) = 1 ) ) |
9 |
5 8
|
mpbid |
|- ( Z e. Odd -> ( 2 gcd Z ) = 1 ) |
10 |
4 9
|
eqtrd |
|- ( Z e. Odd -> ( Z gcd 2 ) = 1 ) |