Description: The greatest common divisor of an odd number and 2 is 1, i.e., 2 and any odd number are coprime. Remark: The proof using dfodd7 is longer (see proof in comment)! (Contributed by AV, 5-Jun-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gcd2odd1 | ⊢ ( 𝑍 ∈ Odd → ( 𝑍 gcd 2 ) = 1 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | oddz | ⊢ ( 𝑍 ∈ Odd → 𝑍 ∈ ℤ ) | |
| 2 | 2z | ⊢ 2 ∈ ℤ | |
| 3 | gcdcom | ⊢ ( ( 𝑍 ∈ ℤ ∧ 2 ∈ ℤ ) → ( 𝑍 gcd 2 ) = ( 2 gcd 𝑍 ) ) | |
| 4 | 1 2 3 | sylancl | ⊢ ( 𝑍 ∈ Odd → ( 𝑍 gcd 2 ) = ( 2 gcd 𝑍 ) ) | 
| 5 | 2ndvdsodd | ⊢ ( 𝑍 ∈ Odd → ¬ 2 ∥ 𝑍 ) | |
| 6 | 2prm | ⊢ 2 ∈ ℙ | |
| 7 | coprm | ⊢ ( ( 2 ∈ ℙ ∧ 𝑍 ∈ ℤ ) → ( ¬ 2 ∥ 𝑍 ↔ ( 2 gcd 𝑍 ) = 1 ) ) | |
| 8 | 6 1 7 | sylancr | ⊢ ( 𝑍 ∈ Odd → ( ¬ 2 ∥ 𝑍 ↔ ( 2 gcd 𝑍 ) = 1 ) ) | 
| 9 | 5 8 | mpbid | ⊢ ( 𝑍 ∈ Odd → ( 2 gcd 𝑍 ) = 1 ) | 
| 10 | 4 9 | eqtrd | ⊢ ( 𝑍 ∈ Odd → ( 𝑍 gcd 2 ) = 1 ) |