Description: The greatest common divisor of an odd number and 2 is 1, i.e., 2 and any odd number are coprime. Remark: The proof using dfodd7 is longer (see proof in comment)! (Contributed by AV, 5-Jun-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | gcd2odd1 | ⊢ ( 𝑍 ∈ Odd → ( 𝑍 gcd 2 ) = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oddz | ⊢ ( 𝑍 ∈ Odd → 𝑍 ∈ ℤ ) | |
2 | 2z | ⊢ 2 ∈ ℤ | |
3 | gcdcom | ⊢ ( ( 𝑍 ∈ ℤ ∧ 2 ∈ ℤ ) → ( 𝑍 gcd 2 ) = ( 2 gcd 𝑍 ) ) | |
4 | 1 2 3 | sylancl | ⊢ ( 𝑍 ∈ Odd → ( 𝑍 gcd 2 ) = ( 2 gcd 𝑍 ) ) |
5 | 2ndvdsodd | ⊢ ( 𝑍 ∈ Odd → ¬ 2 ∥ 𝑍 ) | |
6 | 2prm | ⊢ 2 ∈ ℙ | |
7 | coprm | ⊢ ( ( 2 ∈ ℙ ∧ 𝑍 ∈ ℤ ) → ( ¬ 2 ∥ 𝑍 ↔ ( 2 gcd 𝑍 ) = 1 ) ) | |
8 | 6 1 7 | sylancr | ⊢ ( 𝑍 ∈ Odd → ( ¬ 2 ∥ 𝑍 ↔ ( 2 gcd 𝑍 ) = 1 ) ) |
9 | 5 8 | mpbid | ⊢ ( 𝑍 ∈ Odd → ( 2 gcd 𝑍 ) = 1 ) |
10 | 4 9 | eqtrd | ⊢ ( 𝑍 ∈ Odd → ( 𝑍 gcd 2 ) = 1 ) |