Description: Alternate definition for odd numbers. (Contributed by AV, 1-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | dfodd7 | ⊢ Odd = { 𝑧 ∈ ℤ ∣ ( 2 gcd 𝑧 ) = 1 } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isodd7 | ⊢ ( 𝑥 ∈ Odd ↔ ( 𝑥 ∈ ℤ ∧ ( 2 gcd 𝑥 ) = 1 ) ) | |
2 | oveq2 | ⊢ ( 𝑧 = 𝑥 → ( 2 gcd 𝑧 ) = ( 2 gcd 𝑥 ) ) | |
3 | 2 | eqeq1d | ⊢ ( 𝑧 = 𝑥 → ( ( 2 gcd 𝑧 ) = 1 ↔ ( 2 gcd 𝑥 ) = 1 ) ) |
4 | 3 | elrab | ⊢ ( 𝑥 ∈ { 𝑧 ∈ ℤ ∣ ( 2 gcd 𝑧 ) = 1 } ↔ ( 𝑥 ∈ ℤ ∧ ( 2 gcd 𝑥 ) = 1 ) ) |
5 | 1 4 | bitr4i | ⊢ ( 𝑥 ∈ Odd ↔ 𝑥 ∈ { 𝑧 ∈ ℤ ∣ ( 2 gcd 𝑧 ) = 1 } ) |
6 | 5 | eqriv | ⊢ Odd = { 𝑧 ∈ ℤ ∣ ( 2 gcd 𝑧 ) = 1 } |