Metamath Proof Explorer


Theorem isodd7

Description: The predicate "is an odd number". An odd number and 2 have 1 as greatest common divisor. (Contributed by AV, 1-Jul-2020)

Ref Expression
Assertion isodd7 ( 𝑍 ∈ Odd ↔ ( 𝑍 ∈ ℤ ∧ ( 2 gcd 𝑍 ) = 1 ) )

Proof

Step Hyp Ref Expression
1 isodd3 ( 𝑍 ∈ Odd ↔ ( 𝑍 ∈ ℤ ∧ ¬ 2 ∥ 𝑍 ) )
2 2prm 2 ∈ ℙ
3 coprm ( ( 2 ∈ ℙ ∧ 𝑍 ∈ ℤ ) → ( ¬ 2 ∥ 𝑍 ↔ ( 2 gcd 𝑍 ) = 1 ) )
4 2 3 mpan ( 𝑍 ∈ ℤ → ( ¬ 2 ∥ 𝑍 ↔ ( 2 gcd 𝑍 ) = 1 ) )
5 4 pm5.32i ( ( 𝑍 ∈ ℤ ∧ ¬ 2 ∥ 𝑍 ) ↔ ( 𝑍 ∈ ℤ ∧ ( 2 gcd 𝑍 ) = 1 ) )
6 1 5 bitri ( 𝑍 ∈ Odd ↔ ( 𝑍 ∈ ℤ ∧ ( 2 gcd 𝑍 ) = 1 ) )