Metamath Proof Explorer


Theorem isodd7

Description: The predicate "is an odd number". An odd number and 2 have 1 as greatest common divisor. (Contributed by AV, 1-Jul-2020)

Ref Expression
Assertion isodd7
|- ( Z e. Odd <-> ( Z e. ZZ /\ ( 2 gcd Z ) = 1 ) )

Proof

Step Hyp Ref Expression
1 isodd3
 |-  ( Z e. Odd <-> ( Z e. ZZ /\ -. 2 || Z ) )
2 2prm
 |-  2 e. Prime
3 coprm
 |-  ( ( 2 e. Prime /\ Z e. ZZ ) -> ( -. 2 || Z <-> ( 2 gcd Z ) = 1 ) )
4 2 3 mpan
 |-  ( Z e. ZZ -> ( -. 2 || Z <-> ( 2 gcd Z ) = 1 ) )
5 4 pm5.32i
 |-  ( ( Z e. ZZ /\ -. 2 || Z ) <-> ( Z e. ZZ /\ ( 2 gcd Z ) = 1 ) )
6 1 5 bitri
 |-  ( Z e. Odd <-> ( Z e. ZZ /\ ( 2 gcd Z ) = 1 ) )