Description: Alternate definition for even numbers. (Contributed by AV, 1-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfeven5 | |- Even = { z e. ZZ | ( 2 gcd z ) = 2 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseven5 | |- ( x e. Even <-> ( x e. ZZ /\ ( 2 gcd x ) = 2 ) ) |
|
| 2 | oveq2 | |- ( z = x -> ( 2 gcd z ) = ( 2 gcd x ) ) |
|
| 3 | 2 | eqeq1d | |- ( z = x -> ( ( 2 gcd z ) = 2 <-> ( 2 gcd x ) = 2 ) ) |
| 4 | 3 | elrab | |- ( x e. { z e. ZZ | ( 2 gcd z ) = 2 } <-> ( x e. ZZ /\ ( 2 gcd x ) = 2 ) ) |
| 5 | 1 4 | bitr4i | |- ( x e. Even <-> x e. { z e. ZZ | ( 2 gcd z ) = 2 } ) |
| 6 | 5 | eqriv | |- Even = { z e. ZZ | ( 2 gcd z ) = 2 } |