Description: Alternate definition for even numbers. (Contributed by AV, 1-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | dfeven5 | |- Even = { z e. ZZ | ( 2 gcd z ) = 2 } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iseven5 | |- ( x e. Even <-> ( x e. ZZ /\ ( 2 gcd x ) = 2 ) ) |
|
2 | oveq2 | |- ( z = x -> ( 2 gcd z ) = ( 2 gcd x ) ) |
|
3 | 2 | eqeq1d | |- ( z = x -> ( ( 2 gcd z ) = 2 <-> ( 2 gcd x ) = 2 ) ) |
4 | 3 | elrab | |- ( x e. { z e. ZZ | ( 2 gcd z ) = 2 } <-> ( x e. ZZ /\ ( 2 gcd x ) = 2 ) ) |
5 | 1 4 | bitr4i | |- ( x e. Even <-> x e. { z e. ZZ | ( 2 gcd z ) = 2 } ) |
6 | 5 | eqriv | |- Even = { z e. ZZ | ( 2 gcd z ) = 2 } |