Metamath Proof Explorer


Theorem iseven5

Description: The predicate "is an even number". An even number and 2 have 2 as greatest common divisor. (Contributed by AV, 1-Jul-2020)

Ref Expression
Assertion iseven5
|- ( Z e. Even <-> ( Z e. ZZ /\ ( 2 gcd Z ) = 2 ) )

Proof

Step Hyp Ref Expression
1 iseven2
 |-  ( Z e. Even <-> ( Z e. ZZ /\ 2 || Z ) )
2 2nn
 |-  2 e. NN
3 gcdzeq
 |-  ( ( 2 e. NN /\ Z e. ZZ ) -> ( ( 2 gcd Z ) = 2 <-> 2 || Z ) )
4 2 3 mpan
 |-  ( Z e. ZZ -> ( ( 2 gcd Z ) = 2 <-> 2 || Z ) )
5 4 bicomd
 |-  ( Z e. ZZ -> ( 2 || Z <-> ( 2 gcd Z ) = 2 ) )
6 5 pm5.32i
 |-  ( ( Z e. ZZ /\ 2 || Z ) <-> ( Z e. ZZ /\ ( 2 gcd Z ) = 2 ) )
7 1 6 bitri
 |-  ( Z e. Even <-> ( Z e. ZZ /\ ( 2 gcd Z ) = 2 ) )