| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnz |
|- ( A e. NN -> A e. ZZ ) |
| 2 |
|
gcddvds |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
| 3 |
1 2
|
sylan |
|- ( ( A e. NN /\ B e. ZZ ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
| 4 |
3
|
simprd |
|- ( ( A e. NN /\ B e. ZZ ) -> ( A gcd B ) || B ) |
| 5 |
|
breq1 |
|- ( ( A gcd B ) = A -> ( ( A gcd B ) || B <-> A || B ) ) |
| 6 |
4 5
|
syl5ibcom |
|- ( ( A e. NN /\ B e. ZZ ) -> ( ( A gcd B ) = A -> A || B ) ) |
| 7 |
1
|
adantr |
|- ( ( A e. NN /\ B e. ZZ ) -> A e. ZZ ) |
| 8 |
|
iddvds |
|- ( A e. ZZ -> A || A ) |
| 9 |
7 8
|
syl |
|- ( ( A e. NN /\ B e. ZZ ) -> A || A ) |
| 10 |
|
simpr |
|- ( ( A e. NN /\ B e. ZZ ) -> B e. ZZ ) |
| 11 |
|
nnne0 |
|- ( A e. NN -> A =/= 0 ) |
| 12 |
|
simpl |
|- ( ( A = 0 /\ B = 0 ) -> A = 0 ) |
| 13 |
12
|
necon3ai |
|- ( A =/= 0 -> -. ( A = 0 /\ B = 0 ) ) |
| 14 |
11 13
|
syl |
|- ( A e. NN -> -. ( A = 0 /\ B = 0 ) ) |
| 15 |
14
|
adantr |
|- ( ( A e. NN /\ B e. ZZ ) -> -. ( A = 0 /\ B = 0 ) ) |
| 16 |
|
dvdslegcd |
|- ( ( ( A e. ZZ /\ A e. ZZ /\ B e. ZZ ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( ( A || A /\ A || B ) -> A <_ ( A gcd B ) ) ) |
| 17 |
7 7 10 15 16
|
syl31anc |
|- ( ( A e. NN /\ B e. ZZ ) -> ( ( A || A /\ A || B ) -> A <_ ( A gcd B ) ) ) |
| 18 |
9 17
|
mpand |
|- ( ( A e. NN /\ B e. ZZ ) -> ( A || B -> A <_ ( A gcd B ) ) ) |
| 19 |
3
|
simpld |
|- ( ( A e. NN /\ B e. ZZ ) -> ( A gcd B ) || A ) |
| 20 |
|
gcdcl |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) e. NN0 ) |
| 21 |
1 20
|
sylan |
|- ( ( A e. NN /\ B e. ZZ ) -> ( A gcd B ) e. NN0 ) |
| 22 |
21
|
nn0zd |
|- ( ( A e. NN /\ B e. ZZ ) -> ( A gcd B ) e. ZZ ) |
| 23 |
|
simpl |
|- ( ( A e. NN /\ B e. ZZ ) -> A e. NN ) |
| 24 |
|
dvdsle |
|- ( ( ( A gcd B ) e. ZZ /\ A e. NN ) -> ( ( A gcd B ) || A -> ( A gcd B ) <_ A ) ) |
| 25 |
22 23 24
|
syl2anc |
|- ( ( A e. NN /\ B e. ZZ ) -> ( ( A gcd B ) || A -> ( A gcd B ) <_ A ) ) |
| 26 |
19 25
|
mpd |
|- ( ( A e. NN /\ B e. ZZ ) -> ( A gcd B ) <_ A ) |
| 27 |
18 26
|
jctild |
|- ( ( A e. NN /\ B e. ZZ ) -> ( A || B -> ( ( A gcd B ) <_ A /\ A <_ ( A gcd B ) ) ) ) |
| 28 |
21
|
nn0red |
|- ( ( A e. NN /\ B e. ZZ ) -> ( A gcd B ) e. RR ) |
| 29 |
|
nnre |
|- ( A e. NN -> A e. RR ) |
| 30 |
29
|
adantr |
|- ( ( A e. NN /\ B e. ZZ ) -> A e. RR ) |
| 31 |
28 30
|
letri3d |
|- ( ( A e. NN /\ B e. ZZ ) -> ( ( A gcd B ) = A <-> ( ( A gcd B ) <_ A /\ A <_ ( A gcd B ) ) ) ) |
| 32 |
27 31
|
sylibrd |
|- ( ( A e. NN /\ B e. ZZ ) -> ( A || B -> ( A gcd B ) = A ) ) |
| 33 |
6 32
|
impbid |
|- ( ( A e. NN /\ B e. ZZ ) -> ( ( A gcd B ) = A <-> A || B ) ) |