Metamath Proof Explorer


Theorem iseven5

Description: The predicate "is an even number". An even number and 2 have 2 as greatest common divisor. (Contributed by AV, 1-Jul-2020)

Ref Expression
Assertion iseven5 ( 𝑍 ∈ Even ↔ ( 𝑍 ∈ ℤ ∧ ( 2 gcd 𝑍 ) = 2 ) )

Proof

Step Hyp Ref Expression
1 iseven2 ( 𝑍 ∈ Even ↔ ( 𝑍 ∈ ℤ ∧ 2 ∥ 𝑍 ) )
2 2nn 2 ∈ ℕ
3 gcdzeq ( ( 2 ∈ ℕ ∧ 𝑍 ∈ ℤ ) → ( ( 2 gcd 𝑍 ) = 2 ↔ 2 ∥ 𝑍 ) )
4 2 3 mpan ( 𝑍 ∈ ℤ → ( ( 2 gcd 𝑍 ) = 2 ↔ 2 ∥ 𝑍 ) )
5 4 bicomd ( 𝑍 ∈ ℤ → ( 2 ∥ 𝑍 ↔ ( 2 gcd 𝑍 ) = 2 ) )
6 5 pm5.32i ( ( 𝑍 ∈ ℤ ∧ 2 ∥ 𝑍 ) ↔ ( 𝑍 ∈ ℤ ∧ ( 2 gcd 𝑍 ) = 2 ) )
7 1 6 bitri ( 𝑍 ∈ Even ↔ ( 𝑍 ∈ ℤ ∧ ( 2 gcd 𝑍 ) = 2 ) )