Metamath Proof Explorer


Theorem isodd7

Description: The predicate "is an odd number". An odd number and 2 have 1 as greatest common divisor. (Contributed by AV, 1-Jul-2020)

Ref Expression
Assertion isodd7 Z Odd Z 2 gcd Z = 1

Proof

Step Hyp Ref Expression
1 isodd3 Z Odd Z ¬ 2 Z
2 2prm 2
3 coprm 2 Z ¬ 2 Z 2 gcd Z = 1
4 2 3 mpan Z ¬ 2 Z 2 gcd Z = 1
5 4 pm5.32i Z ¬ 2 Z Z 2 gcd Z = 1
6 1 5 bitri Z Odd Z 2 gcd Z = 1