Description: The group isomorphism function is a well-defined function. (Contributed by Mario Carneiro, 23-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | gimfn | |- GrpIso Fn ( Grp X. Grp ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-gim | |- GrpIso = ( s e. Grp , t e. Grp |-> { g e. ( s GrpHom t ) | g : ( Base ` s ) -1-1-onto-> ( Base ` t ) } ) |
|
2 | ovex | |- ( s GrpHom t ) e. _V |
|
3 | 2 | rabex | |- { g e. ( s GrpHom t ) | g : ( Base ` s ) -1-1-onto-> ( Base ` t ) } e. _V |
4 | 1 3 | fnmpoi | |- GrpIso Fn ( Grp X. Grp ) |