Metamath Proof Explorer


Theorem gimfn

Description: The group isomorphism function is a well-defined function. (Contributed by Mario Carneiro, 23-Aug-2015)

Ref Expression
Assertion gimfn GrpIsoFnGrp×Grp

Proof

Step Hyp Ref Expression
1 df-gim GrpIso=sGrp,tGrpgsGrpHomt|g:Bases1-1 ontoBaset
2 ovex sGrpHomtV
3 2 rabex gsGrpHomt|g:Bases1-1 ontoBasetV
4 1 3 fnmpoi GrpIsoFnGrp×Grp