Step |
Hyp |
Ref |
Expression |
1 |
|
gpgvtxel.i |
|- I = ( 0 ..^ N ) |
2 |
|
gpgvtxel.j |
|- J = ( 1 ..^ ( |^ ` ( N / 2 ) ) ) |
3 |
|
gpgvtxel.g |
|- G = ( N gPetersenGr K ) |
4 |
|
gpgvtxel.v |
|- V = ( Vtx ` G ) |
5 |
1 2 3 4
|
gpgvtxel |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( X e. V <-> E. x e. { 0 , 1 } E. y e. I X = <. x , y >. ) ) |
6 |
|
simpr |
|- ( ( x e. { 0 , 1 } /\ y e. I ) -> y e. I ) |
7 |
|
vex |
|- x e. _V |
8 |
|
vex |
|- y e. _V |
9 |
7 8
|
op2ndd |
|- ( X = <. x , y >. -> ( 2nd ` X ) = y ) |
10 |
9
|
eleq1d |
|- ( X = <. x , y >. -> ( ( 2nd ` X ) e. I <-> y e. I ) ) |
11 |
6 10
|
syl5ibrcom |
|- ( ( x e. { 0 , 1 } /\ y e. I ) -> ( X = <. x , y >. -> ( 2nd ` X ) e. I ) ) |
12 |
11
|
rexlimivv |
|- ( E. x e. { 0 , 1 } E. y e. I X = <. x , y >. -> ( 2nd ` X ) e. I ) |
13 |
5 12
|
biimtrdi |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( X e. V -> ( 2nd ` X ) e. I ) ) |
14 |
13
|
imp |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) /\ X e. V ) -> ( 2nd ` X ) e. I ) |