Step |
Hyp |
Ref |
Expression |
1 |
|
gpgvtxel.i |
|- I = ( 0 ..^ N ) |
2 |
|
gpgvtxel.j |
|- J = ( 1 ..^ ( |^ ` ( N / 2 ) ) ) |
3 |
|
gpgvtxel.g |
|- G = ( N gPetersenGr K ) |
4 |
|
gpgvtxel.v |
|- V = ( Vtx ` G ) |
5 |
3
|
fveq2i |
|- ( Vtx ` G ) = ( Vtx ` ( N gPetersenGr K ) ) |
6 |
4 5
|
eqtri |
|- V = ( Vtx ` ( N gPetersenGr K ) ) |
7 |
6
|
eleq2i |
|- ( X e. V <-> X e. ( Vtx ` ( N gPetersenGr K ) ) ) |
8 |
|
eluzge3nn |
|- ( N e. ( ZZ>= ` 3 ) -> N e. NN ) |
9 |
2 1
|
gpgvtx |
|- ( ( N e. NN /\ K e. J ) -> ( Vtx ` ( N gPetersenGr K ) ) = ( { 0 , 1 } X. I ) ) |
10 |
9
|
eleq2d |
|- ( ( N e. NN /\ K e. J ) -> ( X e. ( Vtx ` ( N gPetersenGr K ) ) <-> X e. ( { 0 , 1 } X. I ) ) ) |
11 |
8 10
|
sylan |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( X e. ( Vtx ` ( N gPetersenGr K ) ) <-> X e. ( { 0 , 1 } X. I ) ) ) |
12 |
7 11
|
bitrid |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( X e. V <-> X e. ( { 0 , 1 } X. I ) ) ) |
13 |
|
elxp2 |
|- ( X e. ( { 0 , 1 } X. I ) <-> E. x e. { 0 , 1 } E. y e. I X = <. x , y >. ) |
14 |
12 13
|
bitrdi |
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( X e. V <-> E. x e. { 0 , 1 } E. y e. I X = <. x , y >. ) ) |