Metamath Proof Explorer


Theorem gpgvtxel

Description: A vertex in a generalized Petersen graph G . (Contributed by AV, 29-Aug-2025)

Ref Expression
Hypotheses gpgvtxel.i
|- I = ( 0 ..^ N )
gpgvtxel.j
|- J = ( 1 ..^ ( |^ ` ( N / 2 ) ) )
gpgvtxel.g
|- G = ( N gPetersenGr K )
gpgvtxel.v
|- V = ( Vtx ` G )
Assertion gpgvtxel
|- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( X e. V <-> E. x e. { 0 , 1 } E. y e. I X = <. x , y >. ) )

Proof

Step Hyp Ref Expression
1 gpgvtxel.i
 |-  I = ( 0 ..^ N )
2 gpgvtxel.j
 |-  J = ( 1 ..^ ( |^ ` ( N / 2 ) ) )
3 gpgvtxel.g
 |-  G = ( N gPetersenGr K )
4 gpgvtxel.v
 |-  V = ( Vtx ` G )
5 3 fveq2i
 |-  ( Vtx ` G ) = ( Vtx ` ( N gPetersenGr K ) )
6 4 5 eqtri
 |-  V = ( Vtx ` ( N gPetersenGr K ) )
7 6 eleq2i
 |-  ( X e. V <-> X e. ( Vtx ` ( N gPetersenGr K ) ) )
8 eluzge3nn
 |-  ( N e. ( ZZ>= ` 3 ) -> N e. NN )
9 2 1 gpgvtx
 |-  ( ( N e. NN /\ K e. J ) -> ( Vtx ` ( N gPetersenGr K ) ) = ( { 0 , 1 } X. I ) )
10 9 eleq2d
 |-  ( ( N e. NN /\ K e. J ) -> ( X e. ( Vtx ` ( N gPetersenGr K ) ) <-> X e. ( { 0 , 1 } X. I ) ) )
11 8 10 sylan
 |-  ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( X e. ( Vtx ` ( N gPetersenGr K ) ) <-> X e. ( { 0 , 1 } X. I ) ) )
12 7 11 bitrid
 |-  ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( X e. V <-> X e. ( { 0 , 1 } X. I ) ) )
13 elxp2
 |-  ( X e. ( { 0 , 1 } X. I ) <-> E. x e. { 0 , 1 } E. y e. I X = <. x , y >. )
14 12 13 bitrdi
 |-  ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( X e. V <-> E. x e. { 0 , 1 } E. y e. I X = <. x , y >. ) )