Metamath Proof Explorer


Theorem gpgvtxel

Description: A vertex in a generalized Petersen graph G . (Contributed by AV, 29-Aug-2025)

Ref Expression
Hypotheses gpgvtxel.i I = 0 ..^ N
gpgvtxel.j J = 1 ..^ N 2
gpgvtxel.g No typesetting found for |- G = ( N gPetersenGr K ) with typecode |-
gpgvtxel.v V = Vtx G
Assertion gpgvtxel N 3 K J X V x 0 1 y I X = x y

Proof

Step Hyp Ref Expression
1 gpgvtxel.i I = 0 ..^ N
2 gpgvtxel.j J = 1 ..^ N 2
3 gpgvtxel.g Could not format G = ( N gPetersenGr K ) : No typesetting found for |- G = ( N gPetersenGr K ) with typecode |-
4 gpgvtxel.v V = Vtx G
5 3 fveq2i Could not format ( Vtx ` G ) = ( Vtx ` ( N gPetersenGr K ) ) : No typesetting found for |- ( Vtx ` G ) = ( Vtx ` ( N gPetersenGr K ) ) with typecode |-
6 4 5 eqtri Could not format V = ( Vtx ` ( N gPetersenGr K ) ) : No typesetting found for |- V = ( Vtx ` ( N gPetersenGr K ) ) with typecode |-
7 6 eleq2i Could not format ( X e. V <-> X e. ( Vtx ` ( N gPetersenGr K ) ) ) : No typesetting found for |- ( X e. V <-> X e. ( Vtx ` ( N gPetersenGr K ) ) ) with typecode |-
8 eluzge3nn N 3 N
9 2 1 gpgvtx Could not format ( ( N e. NN /\ K e. J ) -> ( Vtx ` ( N gPetersenGr K ) ) = ( { 0 , 1 } X. I ) ) : No typesetting found for |- ( ( N e. NN /\ K e. J ) -> ( Vtx ` ( N gPetersenGr K ) ) = ( { 0 , 1 } X. I ) ) with typecode |-
10 9 eleq2d Could not format ( ( N e. NN /\ K e. J ) -> ( X e. ( Vtx ` ( N gPetersenGr K ) ) <-> X e. ( { 0 , 1 } X. I ) ) ) : No typesetting found for |- ( ( N e. NN /\ K e. J ) -> ( X e. ( Vtx ` ( N gPetersenGr K ) ) <-> X e. ( { 0 , 1 } X. I ) ) ) with typecode |-
11 8 10 sylan Could not format ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( X e. ( Vtx ` ( N gPetersenGr K ) ) <-> X e. ( { 0 , 1 } X. I ) ) ) : No typesetting found for |- ( ( N e. ( ZZ>= ` 3 ) /\ K e. J ) -> ( X e. ( Vtx ` ( N gPetersenGr K ) ) <-> X e. ( { 0 , 1 } X. I ) ) ) with typecode |-
12 7 11 bitrid N 3 K J X V X 0 1 × I
13 elxp2 X 0 1 × I x 0 1 y I X = x y
14 12 13 bitrdi N 3 K J X V x 0 1 y I X = x y