Metamath Proof Explorer


Theorem gpgvtxel

Description: A vertex in a generalized Petersen graph G . (Contributed by AV, 29-Aug-2025)

Ref Expression
Hypotheses gpgvtxel.i 𝐼 = ( 0 ..^ 𝑁 )
gpgvtxel.j 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) )
gpgvtxel.g 𝐺 = ( 𝑁 gPetersenGr 𝐾 )
gpgvtxel.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion gpgvtxel ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) → ( 𝑋𝑉 ↔ ∃ 𝑥 ∈ { 0 , 1 } ∃ 𝑦𝐼 𝑋 = ⟨ 𝑥 , 𝑦 ⟩ ) )

Proof

Step Hyp Ref Expression
1 gpgvtxel.i 𝐼 = ( 0 ..^ 𝑁 )
2 gpgvtxel.j 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) )
3 gpgvtxel.g 𝐺 = ( 𝑁 gPetersenGr 𝐾 )
4 gpgvtxel.v 𝑉 = ( Vtx ‘ 𝐺 )
5 3 fveq2i ( Vtx ‘ 𝐺 ) = ( Vtx ‘ ( 𝑁 gPetersenGr 𝐾 ) )
6 4 5 eqtri 𝑉 = ( Vtx ‘ ( 𝑁 gPetersenGr 𝐾 ) )
7 6 eleq2i ( 𝑋𝑉𝑋 ∈ ( Vtx ‘ ( 𝑁 gPetersenGr 𝐾 ) ) )
8 eluzge3nn ( 𝑁 ∈ ( ℤ ‘ 3 ) → 𝑁 ∈ ℕ )
9 2 1 gpgvtx ( ( 𝑁 ∈ ℕ ∧ 𝐾𝐽 ) → ( Vtx ‘ ( 𝑁 gPetersenGr 𝐾 ) ) = ( { 0 , 1 } × 𝐼 ) )
10 9 eleq2d ( ( 𝑁 ∈ ℕ ∧ 𝐾𝐽 ) → ( 𝑋 ∈ ( Vtx ‘ ( 𝑁 gPetersenGr 𝐾 ) ) ↔ 𝑋 ∈ ( { 0 , 1 } × 𝐼 ) ) )
11 8 10 sylan ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) → ( 𝑋 ∈ ( Vtx ‘ ( 𝑁 gPetersenGr 𝐾 ) ) ↔ 𝑋 ∈ ( { 0 , 1 } × 𝐼 ) ) )
12 7 11 bitrid ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) → ( 𝑋𝑉𝑋 ∈ ( { 0 , 1 } × 𝐼 ) ) )
13 elxp2 ( 𝑋 ∈ ( { 0 , 1 } × 𝐼 ) ↔ ∃ 𝑥 ∈ { 0 , 1 } ∃ 𝑦𝐼 𝑋 = ⟨ 𝑥 , 𝑦 ⟩ )
14 12 13 bitrdi ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) → ( 𝑋𝑉 ↔ ∃ 𝑥 ∈ { 0 , 1 } ∃ 𝑦𝐼 𝑋 = ⟨ 𝑥 , 𝑦 ⟩ ) )