Step |
Hyp |
Ref |
Expression |
1 |
|
gpgvtxel.i |
⊢ 𝐼 = ( 0 ..^ 𝑁 ) |
2 |
|
gpgvtxel.j |
⊢ 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |
3 |
|
gpgvtxel.g |
⊢ 𝐺 = ( 𝑁 gPetersenGr 𝐾 ) |
4 |
|
gpgvtxel.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
5 |
3
|
fveq2i |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ ( 𝑁 gPetersenGr 𝐾 ) ) |
6 |
4 5
|
eqtri |
⊢ 𝑉 = ( Vtx ‘ ( 𝑁 gPetersenGr 𝐾 ) ) |
7 |
6
|
eleq2i |
⊢ ( 𝑋 ∈ 𝑉 ↔ 𝑋 ∈ ( Vtx ‘ ( 𝑁 gPetersenGr 𝐾 ) ) ) |
8 |
|
eluzge3nn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) → 𝑁 ∈ ℕ ) |
9 |
2 1
|
gpgvtx |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽 ) → ( Vtx ‘ ( 𝑁 gPetersenGr 𝐾 ) ) = ( { 0 , 1 } × 𝐼 ) ) |
10 |
9
|
eleq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽 ) → ( 𝑋 ∈ ( Vtx ‘ ( 𝑁 gPetersenGr 𝐾 ) ) ↔ 𝑋 ∈ ( { 0 , 1 } × 𝐼 ) ) ) |
11 |
8 10
|
sylan |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) → ( 𝑋 ∈ ( Vtx ‘ ( 𝑁 gPetersenGr 𝐾 ) ) ↔ 𝑋 ∈ ( { 0 , 1 } × 𝐼 ) ) ) |
12 |
7 11
|
bitrid |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) → ( 𝑋 ∈ 𝑉 ↔ 𝑋 ∈ ( { 0 , 1 } × 𝐼 ) ) ) |
13 |
|
elxp2 |
⊢ ( 𝑋 ∈ ( { 0 , 1 } × 𝐼 ) ↔ ∃ 𝑥 ∈ { 0 , 1 } ∃ 𝑦 ∈ 𝐼 𝑋 = 〈 𝑥 , 𝑦 〉 ) |
14 |
12 13
|
bitrdi |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) → ( 𝑋 ∈ 𝑉 ↔ ∃ 𝑥 ∈ { 0 , 1 } ∃ 𝑦 ∈ 𝐼 𝑋 = 〈 𝑥 , 𝑦 〉 ) ) |