Step |
Hyp |
Ref |
Expression |
1 |
|
gpgvtxel.i |
⊢ 𝐼 = ( 0 ..^ 𝑁 ) |
2 |
|
gpgvtxel.j |
⊢ 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) ) |
3 |
|
gpgvtxel.g |
⊢ 𝐺 = ( 𝑁 gPetersenGr 𝐾 ) |
4 |
|
gpgvtxel.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
5 |
1 2 3 4
|
gpgvtxel |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) → ( 𝑋 ∈ 𝑉 ↔ ∃ 𝑥 ∈ { 0 , 1 } ∃ 𝑦 ∈ 𝐼 𝑋 = 〈 𝑥 , 𝑦 〉 ) ) |
6 |
|
simpr |
⊢ ( ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ 𝐼 ) → 𝑦 ∈ 𝐼 ) |
7 |
|
vex |
⊢ 𝑥 ∈ V |
8 |
|
vex |
⊢ 𝑦 ∈ V |
9 |
7 8
|
op2ndd |
⊢ ( 𝑋 = 〈 𝑥 , 𝑦 〉 → ( 2nd ‘ 𝑋 ) = 𝑦 ) |
10 |
9
|
eleq1d |
⊢ ( 𝑋 = 〈 𝑥 , 𝑦 〉 → ( ( 2nd ‘ 𝑋 ) ∈ 𝐼 ↔ 𝑦 ∈ 𝐼 ) ) |
11 |
6 10
|
syl5ibrcom |
⊢ ( ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦 ∈ 𝐼 ) → ( 𝑋 = 〈 𝑥 , 𝑦 〉 → ( 2nd ‘ 𝑋 ) ∈ 𝐼 ) ) |
12 |
11
|
rexlimivv |
⊢ ( ∃ 𝑥 ∈ { 0 , 1 } ∃ 𝑦 ∈ 𝐼 𝑋 = 〈 𝑥 , 𝑦 〉 → ( 2nd ‘ 𝑋 ) ∈ 𝐼 ) |
13 |
5 12
|
biimtrdi |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) → ( 𝑋 ∈ 𝑉 → ( 2nd ‘ 𝑋 ) ∈ 𝐼 ) ) |
14 |
13
|
imp |
⊢ ( ( ( 𝑁 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝐾 ∈ 𝐽 ) ∧ 𝑋 ∈ 𝑉 ) → ( 2nd ‘ 𝑋 ) ∈ 𝐼 ) |