Metamath Proof Explorer


Theorem gpgvtxel2

Description: The second component of a vertex in a generalized Petersen graph G . (Contributed by AV, 30-Aug-2025)

Ref Expression
Hypotheses gpgvtxel.i 𝐼 = ( 0 ..^ 𝑁 )
gpgvtxel.j 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) )
gpgvtxel.g 𝐺 = ( 𝑁 gPetersenGr 𝐾 )
gpgvtxel.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion gpgvtxel2 ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ 𝑋𝑉 ) → ( 2nd𝑋 ) ∈ 𝐼 )

Proof

Step Hyp Ref Expression
1 gpgvtxel.i 𝐼 = ( 0 ..^ 𝑁 )
2 gpgvtxel.j 𝐽 = ( 1 ..^ ( ⌈ ‘ ( 𝑁 / 2 ) ) )
3 gpgvtxel.g 𝐺 = ( 𝑁 gPetersenGr 𝐾 )
4 gpgvtxel.v 𝑉 = ( Vtx ‘ 𝐺 )
5 1 2 3 4 gpgvtxel ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) → ( 𝑋𝑉 ↔ ∃ 𝑥 ∈ { 0 , 1 } ∃ 𝑦𝐼 𝑋 = ⟨ 𝑥 , 𝑦 ⟩ ) )
6 simpr ( ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦𝐼 ) → 𝑦𝐼 )
7 vex 𝑥 ∈ V
8 vex 𝑦 ∈ V
9 7 8 op2ndd ( 𝑋 = ⟨ 𝑥 , 𝑦 ⟩ → ( 2nd𝑋 ) = 𝑦 )
10 9 eleq1d ( 𝑋 = ⟨ 𝑥 , 𝑦 ⟩ → ( ( 2nd𝑋 ) ∈ 𝐼𝑦𝐼 ) )
11 6 10 syl5ibrcom ( ( 𝑥 ∈ { 0 , 1 } ∧ 𝑦𝐼 ) → ( 𝑋 = ⟨ 𝑥 , 𝑦 ⟩ → ( 2nd𝑋 ) ∈ 𝐼 ) )
12 11 rexlimivv ( ∃ 𝑥 ∈ { 0 , 1 } ∃ 𝑦𝐼 𝑋 = ⟨ 𝑥 , 𝑦 ⟩ → ( 2nd𝑋 ) ∈ 𝐼 )
13 5 12 biimtrdi ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) → ( 𝑋𝑉 → ( 2nd𝑋 ) ∈ 𝐼 ) )
14 13 imp ( ( ( 𝑁 ∈ ( ℤ ‘ 3 ) ∧ 𝐾𝐽 ) ∧ 𝑋𝑉 ) → ( 2nd𝑋 ) ∈ 𝐼 )