Description: Re-index a finite group sum using a bijection. Corresponds to the first equation in Lang p. 5 with M = 1 . (Contributed by AV, 26-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsumreidx.b | |- B = ( Base ` G ) |
|
gsumreidx.z | |- .0. = ( 0g ` G ) |
||
gsumreidx.g | |- ( ph -> G e. CMnd ) |
||
gsumreidx.f | |- ( ph -> F : ( M ... N ) --> B ) |
||
gsumreidx.h | |- ( ph -> H : ( M ... N ) -1-1-onto-> ( M ... N ) ) |
||
Assertion | gsumreidx | |- ( ph -> ( G gsum F ) = ( G gsum ( F o. H ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumreidx.b | |- B = ( Base ` G ) |
|
2 | gsumreidx.z | |- .0. = ( 0g ` G ) |
|
3 | gsumreidx.g | |- ( ph -> G e. CMnd ) |
|
4 | gsumreidx.f | |- ( ph -> F : ( M ... N ) --> B ) |
|
5 | gsumreidx.h | |- ( ph -> H : ( M ... N ) -1-1-onto-> ( M ... N ) ) |
|
6 | ovexd | |- ( ph -> ( M ... N ) e. _V ) |
|
7 | fzfid | |- ( ph -> ( M ... N ) e. Fin ) |
|
8 | 2 | fvexi | |- .0. e. _V |
9 | 8 | a1i | |- ( ph -> .0. e. _V ) |
10 | 4 7 9 | fdmfifsupp | |- ( ph -> F finSupp .0. ) |
11 | 1 2 3 6 4 10 5 | gsumf1o | |- ( ph -> ( G gsum F ) = ( G gsum ( F o. H ) ) ) |