Metamath Proof Explorer


Theorem gsumreidx

Description: Re-index a finite group sum using a bijection. Corresponds to the first equation in Lang p. 5 with M = 1 . (Contributed by AV, 26-Dec-2023)

Ref Expression
Hypotheses gsumreidx.b
|- B = ( Base ` G )
gsumreidx.z
|- .0. = ( 0g ` G )
gsumreidx.g
|- ( ph -> G e. CMnd )
gsumreidx.f
|- ( ph -> F : ( M ... N ) --> B )
gsumreidx.h
|- ( ph -> H : ( M ... N ) -1-1-onto-> ( M ... N ) )
Assertion gsumreidx
|- ( ph -> ( G gsum F ) = ( G gsum ( F o. H ) ) )

Proof

Step Hyp Ref Expression
1 gsumreidx.b
 |-  B = ( Base ` G )
2 gsumreidx.z
 |-  .0. = ( 0g ` G )
3 gsumreidx.g
 |-  ( ph -> G e. CMnd )
4 gsumreidx.f
 |-  ( ph -> F : ( M ... N ) --> B )
5 gsumreidx.h
 |-  ( ph -> H : ( M ... N ) -1-1-onto-> ( M ... N ) )
6 ovexd
 |-  ( ph -> ( M ... N ) e. _V )
7 fzfid
 |-  ( ph -> ( M ... N ) e. Fin )
8 2 fvexi
 |-  .0. e. _V
9 8 a1i
 |-  ( ph -> .0. e. _V )
10 4 7 9 fdmfifsupp
 |-  ( ph -> F finSupp .0. )
11 1 2 3 6 4 10 5 gsumf1o
 |-  ( ph -> ( G gsum F ) = ( G gsum ( F o. H ) ) )