Description: Simple relationship between < and > . (Contributed by David A. Wheeler, 19-Apr-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gt-lt | |- ( ( A e. _V /\ B e. _V ) -> ( A > B <-> B < A ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-gt | |- > = `' < | |
| 2 | 1 | breqi | |- ( A > B <-> A `' < B ) | 
| 3 | brcnvg | |- ( ( A e. _V /\ B e. _V ) -> ( A `' < B <-> B < A ) ) | |
| 4 | 2 3 | bitrid | |- ( ( A e. _V /\ B e. _V ) -> ( A > B <-> B < A ) ) |