Description: The gaussian integers form a subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gzsubrg | |- Z[i] e. ( SubRing ` CCfld ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gzcn | |- ( x e. Z[i] -> x e. CC ) |
|
| 2 | gzaddcl | |- ( ( x e. Z[i] /\ y e. Z[i] ) -> ( x + y ) e. Z[i] ) |
|
| 3 | gznegcl | |- ( x e. Z[i] -> -u x e. Z[i] ) |
|
| 4 | 1z | |- 1 e. ZZ |
|
| 5 | zgz | |- ( 1 e. ZZ -> 1 e. Z[i] ) |
|
| 6 | 4 5 | ax-mp | |- 1 e. Z[i] |
| 7 | gzmulcl | |- ( ( x e. Z[i] /\ y e. Z[i] ) -> ( x x. y ) e. Z[i] ) |
|
| 8 | 1 2 3 6 7 | cnsubrglem | |- Z[i] e. ( SubRing ` CCfld ) |