Metamath Proof Explorer


Theorem gzsubrg

Description: The gaussian integers form a subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Assertion gzsubrg ℤ[i] ∈ ( SubRing ‘ ℂfld )

Proof

Step Hyp Ref Expression
1 gzcn ( 𝑥 ∈ ℤ[i] → 𝑥 ∈ ℂ )
2 gzaddcl ( ( 𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i] ) → ( 𝑥 + 𝑦 ) ∈ ℤ[i] )
3 gznegcl ( 𝑥 ∈ ℤ[i] → - 𝑥 ∈ ℤ[i] )
4 1z 1 ∈ ℤ
5 zgz ( 1 ∈ ℤ → 1 ∈ ℤ[i] )
6 4 5 ax-mp 1 ∈ ℤ[i]
7 gzmulcl ( ( 𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i] ) → ( 𝑥 · 𝑦 ) ∈ ℤ[i] )
8 1 2 3 6 7 cnsubrglem ℤ[i] ∈ ( SubRing ‘ ℂfld )