| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gzcn |
⊢ ( 𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ ) |
| 2 |
1
|
negcld |
⊢ ( 𝐴 ∈ ℤ[i] → - 𝐴 ∈ ℂ ) |
| 3 |
1
|
renegd |
⊢ ( 𝐴 ∈ ℤ[i] → ( ℜ ‘ - 𝐴 ) = - ( ℜ ‘ 𝐴 ) ) |
| 4 |
|
elgz |
⊢ ( 𝐴 ∈ ℤ[i] ↔ ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ℤ ∧ ( ℑ ‘ 𝐴 ) ∈ ℤ ) ) |
| 5 |
4
|
simp2bi |
⊢ ( 𝐴 ∈ ℤ[i] → ( ℜ ‘ 𝐴 ) ∈ ℤ ) |
| 6 |
5
|
znegcld |
⊢ ( 𝐴 ∈ ℤ[i] → - ( ℜ ‘ 𝐴 ) ∈ ℤ ) |
| 7 |
3 6
|
eqeltrd |
⊢ ( 𝐴 ∈ ℤ[i] → ( ℜ ‘ - 𝐴 ) ∈ ℤ ) |
| 8 |
1
|
imnegd |
⊢ ( 𝐴 ∈ ℤ[i] → ( ℑ ‘ - 𝐴 ) = - ( ℑ ‘ 𝐴 ) ) |
| 9 |
4
|
simp3bi |
⊢ ( 𝐴 ∈ ℤ[i] → ( ℑ ‘ 𝐴 ) ∈ ℤ ) |
| 10 |
9
|
znegcld |
⊢ ( 𝐴 ∈ ℤ[i] → - ( ℑ ‘ 𝐴 ) ∈ ℤ ) |
| 11 |
8 10
|
eqeltrd |
⊢ ( 𝐴 ∈ ℤ[i] → ( ℑ ‘ - 𝐴 ) ∈ ℤ ) |
| 12 |
|
elgz |
⊢ ( - 𝐴 ∈ ℤ[i] ↔ ( - 𝐴 ∈ ℂ ∧ ( ℜ ‘ - 𝐴 ) ∈ ℤ ∧ ( ℑ ‘ - 𝐴 ) ∈ ℤ ) ) |
| 13 |
2 7 11 12
|
syl3anbrc |
⊢ ( 𝐴 ∈ ℤ[i] → - 𝐴 ∈ ℤ[i] ) |