Metamath Proof Explorer


Theorem zgz

Description: An integer is a gaussian integer. (Contributed by Mario Carneiro, 14-Jul-2014)

Ref Expression
Assertion zgz ( 𝐴 ∈ ℤ → 𝐴 ∈ ℤ[i] )

Proof

Step Hyp Ref Expression
1 zcn ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ )
2 zre ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ )
3 2 rered ( 𝐴 ∈ ℤ → ( ℜ ‘ 𝐴 ) = 𝐴 )
4 id ( 𝐴 ∈ ℤ → 𝐴 ∈ ℤ )
5 3 4 eqeltrd ( 𝐴 ∈ ℤ → ( ℜ ‘ 𝐴 ) ∈ ℤ )
6 2 reim0d ( 𝐴 ∈ ℤ → ( ℑ ‘ 𝐴 ) = 0 )
7 0z 0 ∈ ℤ
8 6 7 eqeltrdi ( 𝐴 ∈ ℤ → ( ℑ ‘ 𝐴 ) ∈ ℤ )
9 elgz ( 𝐴 ∈ ℤ[i] ↔ ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ℤ ∧ ( ℑ ‘ 𝐴 ) ∈ ℤ ) )
10 1 5 8 9 syl3anbrc ( 𝐴 ∈ ℤ → 𝐴 ∈ ℤ[i] )