Metamath Proof Explorer


Theorem had0

Description: If the first input is false, then the adder sum is equivalent to the exclusive disjunction of the other two inputs. (Contributed by Mario Carneiro, 4-Sep-2016) (Proof shortened by Wolf Lammen, 12-Jul-2020)

Ref Expression
Assertion had0
|- ( -. ph -> ( hadd ( ph , ps , ch ) <-> ( ps \/_ ch ) ) )

Proof

Step Hyp Ref Expression
1 had1
 |-  ( -. ph -> ( hadd ( -. ph , -. ps , -. ch ) <-> ( -. ps <-> -. ch ) ) )
2 hadnot
 |-  ( -. hadd ( ph , ps , ch ) <-> hadd ( -. ph , -. ps , -. ch ) )
3 xnor
 |-  ( ( ps <-> ch ) <-> -. ( ps \/_ ch ) )
4 notbi
 |-  ( ( ps <-> ch ) <-> ( -. ps <-> -. ch ) )
5 3 4 bitr3i
 |-  ( -. ( ps \/_ ch ) <-> ( -. ps <-> -. ch ) )
6 1 2 5 3bitr4g
 |-  ( -. ph -> ( -. hadd ( ph , ps , ch ) <-> -. ( ps \/_ ch ) ) )
7 6 con4bid
 |-  ( -. ph -> ( hadd ( ph , ps , ch ) <-> ( ps \/_ ch ) ) )