Metamath Proof Explorer


Theorem had0

Description: If the first input is false, then the adder sum is equivalent to the exclusive disjunction of the other two inputs. (Contributed by Mario Carneiro, 4-Sep-2016) (Proof shortened by Wolf Lammen, 12-Jul-2020)

Ref Expression
Assertion had0 ¬ φ hadd φ ψ χ ψ χ

Proof

Step Hyp Ref Expression
1 had1 ¬ φ hadd ¬ φ ¬ ψ ¬ χ ¬ ψ ¬ χ
2 hadnot ¬ hadd φ ψ χ hadd ¬ φ ¬ ψ ¬ χ
3 xnor ψ χ ¬ ψ χ
4 notbi ψ χ ¬ ψ ¬ χ
5 3 4 bitr3i ¬ ψ χ ¬ ψ ¬ χ
6 1 2 5 3bitr4g ¬ φ ¬ hadd φ ψ χ ¬ ψ χ
7 6 con4bid ¬ φ hadd φ ψ χ ψ χ