Description: Commutative law for the adder sum. (Contributed by Mario Carneiro, 4-Sep-2016) (Proof shortened by Wolf Lammen, 17-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | hadcoma | |- ( hadd ( ph , ps , ch ) <-> hadd ( ps , ph , ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom | |- ( ( ph <-> ps ) <-> ( ps <-> ph ) ) |
|
2 | 1 | bibi1i | |- ( ( ( ph <-> ps ) <-> ch ) <-> ( ( ps <-> ph ) <-> ch ) ) |
3 | hadbi | |- ( hadd ( ph , ps , ch ) <-> ( ( ph <-> ps ) <-> ch ) ) |
|
4 | hadbi | |- ( hadd ( ps , ph , ch ) <-> ( ( ps <-> ph ) <-> ch ) ) |
|
5 | 2 3 4 | 3bitr4i | |- ( hadd ( ph , ps , ch ) <-> hadd ( ps , ph , ch ) ) |