Metamath Proof Explorer


Theorem hadcoma

Description: Commutative law for the adder sum. (Contributed by Mario Carneiro, 4-Sep-2016) (Proof shortened by Wolf Lammen, 17-Dec-2023)

Ref Expression
Assertion hadcoma
|- ( hadd ( ph , ps , ch ) <-> hadd ( ps , ph , ch ) )

Proof

Step Hyp Ref Expression
1 bicom
 |-  ( ( ph <-> ps ) <-> ( ps <-> ph ) )
2 1 bibi1i
 |-  ( ( ( ph <-> ps ) <-> ch ) <-> ( ( ps <-> ph ) <-> ch ) )
3 hadbi
 |-  ( hadd ( ph , ps , ch ) <-> ( ( ph <-> ps ) <-> ch ) )
4 hadbi
 |-  ( hadd ( ps , ph , ch ) <-> ( ( ps <-> ph ) <-> ch ) )
5 2 3 4 3bitr4i
 |-  ( hadd ( ph , ps , ch ) <-> hadd ( ps , ph , ch ) )