Metamath Proof Explorer


Theorem harval3on

Description: For any ordinal number A let ( harA ) denote the least cardinal that is greater than A . (Contributed by RP, 4-Nov-2023)

Ref Expression
Assertion harval3on
|- ( A e. On -> ( har ` A ) = |^| { x e. ran card | A ~< x } )

Proof

Step Hyp Ref Expression
1 onenon
 |-  ( A e. On -> A e. dom card )
2 harval3
 |-  ( A e. dom card -> ( har ` A ) = |^| { x e. ran card | A ~< x } )
3 1 2 syl
 |-  ( A e. On -> ( har ` A ) = |^| { x e. ran card | A ~< x } )