Step |
Hyp |
Ref |
Expression |
1 |
|
harval2 |
|- ( A e. dom card -> ( har ` A ) = |^| { y e. On | A ~< y } ) |
2 |
|
vex |
|- x e. _V |
3 |
2
|
a1i |
|- ( A e. dom card -> x e. _V ) |
4 |
|
elrncard |
|- ( x e. ran card <-> ( x e. On /\ A. y e. x -. y ~~ x ) ) |
5 |
4
|
simplbi |
|- ( x e. ran card -> x e. On ) |
6 |
5
|
anim1i |
|- ( ( x e. ran card /\ A ~< x ) -> ( x e. On /\ A ~< x ) ) |
7 |
|
eleq1 |
|- ( y = x -> ( y e. On <-> x e. On ) ) |
8 |
|
breq2 |
|- ( y = x -> ( A ~< y <-> A ~< x ) ) |
9 |
7 8
|
anbi12d |
|- ( y = x -> ( ( y e. On /\ A ~< y ) <-> ( x e. On /\ A ~< x ) ) ) |
10 |
6 9
|
syl5ibr |
|- ( y = x -> ( ( x e. ran card /\ A ~< x ) -> ( y e. On /\ A ~< y ) ) ) |
11 |
10
|
adantl |
|- ( ( A e. dom card /\ y = x ) -> ( ( x e. ran card /\ A ~< x ) -> ( y e. On /\ A ~< y ) ) ) |
12 |
|
ssidd |
|- ( A e. dom card -> x C_ x ) |
13 |
3 11 12
|
intabssd |
|- ( A e. dom card -> |^| { y | ( y e. On /\ A ~< y ) } C_ |^| { x | ( x e. ran card /\ A ~< x ) } ) |
14 |
|
vex |
|- y e. _V |
15 |
14
|
inex1 |
|- ( y i^i ( card ` y ) ) e. _V |
16 |
15
|
a1i |
|- ( A e. dom card -> ( y i^i ( card ` y ) ) e. _V ) |
17 |
|
oncardid |
|- ( y e. On -> ( card ` y ) ~~ y ) |
18 |
17
|
ensymd |
|- ( y e. On -> y ~~ ( card ` y ) ) |
19 |
|
sdomentr |
|- ( ( A ~< y /\ y ~~ ( card ` y ) ) -> A ~< ( card ` y ) ) |
20 |
19
|
a1i |
|- ( y e. On -> ( ( A ~< y /\ y ~~ ( card ` y ) ) -> A ~< ( card ` y ) ) ) |
21 |
18 20
|
mpan2d |
|- ( y e. On -> ( A ~< y -> A ~< ( card ` y ) ) ) |
22 |
|
df-card |
|- card = ( x e. _V |-> |^| { y e. On | y ~~ x } ) |
23 |
22
|
funmpt2 |
|- Fun card |
24 |
|
onenon |
|- ( y e. On -> y e. dom card ) |
25 |
|
fvelrn |
|- ( ( Fun card /\ y e. dom card ) -> ( card ` y ) e. ran card ) |
26 |
23 24 25
|
sylancr |
|- ( y e. On -> ( card ` y ) e. ran card ) |
27 |
21 26
|
jctild |
|- ( y e. On -> ( A ~< y -> ( ( card ` y ) e. ran card /\ A ~< ( card ` y ) ) ) ) |
28 |
27
|
adantl |
|- ( ( x = ( y i^i ( card ` y ) ) /\ y e. On ) -> ( A ~< y -> ( ( card ` y ) e. ran card /\ A ~< ( card ` y ) ) ) ) |
29 |
|
simpl |
|- ( ( x = ( y i^i ( card ` y ) ) /\ y e. On ) -> x = ( y i^i ( card ` y ) ) ) |
30 |
|
cardonle |
|- ( y e. On -> ( card ` y ) C_ y ) |
31 |
30
|
adantl |
|- ( ( x = ( y i^i ( card ` y ) ) /\ y e. On ) -> ( card ` y ) C_ y ) |
32 |
|
sseqin2 |
|- ( ( card ` y ) C_ y <-> ( y i^i ( card ` y ) ) = ( card ` y ) ) |
33 |
31 32
|
sylib |
|- ( ( x = ( y i^i ( card ` y ) ) /\ y e. On ) -> ( y i^i ( card ` y ) ) = ( card ` y ) ) |
34 |
29 33
|
eqtrd |
|- ( ( x = ( y i^i ( card ` y ) ) /\ y e. On ) -> x = ( card ` y ) ) |
35 |
|
eleq1 |
|- ( x = ( card ` y ) -> ( x e. ran card <-> ( card ` y ) e. ran card ) ) |
36 |
|
breq2 |
|- ( x = ( card ` y ) -> ( A ~< x <-> A ~< ( card ` y ) ) ) |
37 |
35 36
|
anbi12d |
|- ( x = ( card ` y ) -> ( ( x e. ran card /\ A ~< x ) <-> ( ( card ` y ) e. ran card /\ A ~< ( card ` y ) ) ) ) |
38 |
34 37
|
syl |
|- ( ( x = ( y i^i ( card ` y ) ) /\ y e. On ) -> ( ( x e. ran card /\ A ~< x ) <-> ( ( card ` y ) e. ran card /\ A ~< ( card ` y ) ) ) ) |
39 |
28 38
|
sylibrd |
|- ( ( x = ( y i^i ( card ` y ) ) /\ y e. On ) -> ( A ~< y -> ( x e. ran card /\ A ~< x ) ) ) |
40 |
39
|
expimpd |
|- ( x = ( y i^i ( card ` y ) ) -> ( ( y e. On /\ A ~< y ) -> ( x e. ran card /\ A ~< x ) ) ) |
41 |
40
|
adantl |
|- ( ( A e. dom card /\ x = ( y i^i ( card ` y ) ) ) -> ( ( y e. On /\ A ~< y ) -> ( x e. ran card /\ A ~< x ) ) ) |
42 |
|
inss1 |
|- ( y i^i ( card ` y ) ) C_ y |
43 |
42
|
a1i |
|- ( A e. dom card -> ( y i^i ( card ` y ) ) C_ y ) |
44 |
16 41 43
|
intabssd |
|- ( A e. dom card -> |^| { x | ( x e. ran card /\ A ~< x ) } C_ |^| { y | ( y e. On /\ A ~< y ) } ) |
45 |
13 44
|
eqssd |
|- ( A e. dom card -> |^| { y | ( y e. On /\ A ~< y ) } = |^| { x | ( x e. ran card /\ A ~< x ) } ) |
46 |
|
df-rab |
|- { y e. On | A ~< y } = { y | ( y e. On /\ A ~< y ) } |
47 |
46
|
inteqi |
|- |^| { y e. On | A ~< y } = |^| { y | ( y e. On /\ A ~< y ) } |
48 |
|
df-rab |
|- { x e. ran card | A ~< x } = { x | ( x e. ran card /\ A ~< x ) } |
49 |
48
|
inteqi |
|- |^| { x e. ran card | A ~< x } = |^| { x | ( x e. ran card /\ A ~< x ) } |
50 |
45 47 49
|
3eqtr4g |
|- ( A e. dom card -> |^| { y e. On | A ~< y } = |^| { x e. ran card | A ~< x } ) |
51 |
1 50
|
eqtrd |
|- ( A e. dom card -> ( har ` A ) = |^| { x e. ran card | A ~< x } ) |