Metamath Proof Explorer


Theorem harval3

Description: ( harA ) is the least cardinal that is greater than A . (Contributed by RP, 4-Nov-2023)

Ref Expression
Assertion harval3 AdomcardharA=xrancard|Ax

Proof

Step Hyp Ref Expression
1 harval2 AdomcardharA=yOn|Ay
2 vex xV
3 2 a1i AdomcardxV
4 elrncard xrancardxOnyx¬yx
5 4 simplbi xrancardxOn
6 5 anim1i xrancardAxxOnAx
7 eleq1 y=xyOnxOn
8 breq2 y=xAyAx
9 7 8 anbi12d y=xyOnAyxOnAx
10 6 9 imbitrrid y=xxrancardAxyOnAy
11 10 adantl Adomcardy=xxrancardAxyOnAy
12 ssidd Adomcardxx
13 3 11 12 intabssd Adomcardy|yOnAyx|xrancardAx
14 vex yV
15 14 inex1 ycardyV
16 15 a1i AdomcardycardyV
17 oncardid yOncardyy
18 17 ensymd yOnycardy
19 sdomentr AyycardyAcardy
20 19 a1i yOnAyycardyAcardy
21 18 20 mpan2d yOnAyAcardy
22 df-card card=xVyOn|yx
23 22 funmpt2 Funcard
24 onenon yOnydomcard
25 fvelrn Funcardydomcardcardyrancard
26 23 24 25 sylancr yOncardyrancard
27 21 26 jctild yOnAycardyrancardAcardy
28 27 adantl x=ycardyyOnAycardyrancardAcardy
29 simpl x=ycardyyOnx=ycardy
30 cardonle yOncardyy
31 30 adantl x=ycardyyOncardyy
32 sseqin2 cardyyycardy=cardy
33 31 32 sylib x=ycardyyOnycardy=cardy
34 29 33 eqtrd x=ycardyyOnx=cardy
35 eleq1 x=cardyxrancardcardyrancard
36 breq2 x=cardyAxAcardy
37 35 36 anbi12d x=cardyxrancardAxcardyrancardAcardy
38 34 37 syl x=ycardyyOnxrancardAxcardyrancardAcardy
39 28 38 sylibrd x=ycardyyOnAyxrancardAx
40 39 expimpd x=ycardyyOnAyxrancardAx
41 40 adantl Adomcardx=ycardyyOnAyxrancardAx
42 inss1 ycardyy
43 42 a1i Adomcardycardyy
44 16 41 43 intabssd Adomcardx|xrancardAxy|yOnAy
45 13 44 eqssd Adomcardy|yOnAy=x|xrancardAx
46 df-rab yOn|Ay=y|yOnAy
47 46 inteqi yOn|Ay=y|yOnAy
48 df-rab xrancard|Ax=x|xrancardAx
49 48 inteqi xrancard|Ax=x|xrancardAx
50 45 47 49 3eqtr4g AdomcardyOn|Ay=xrancard|Ax
51 1 50 eqtrd AdomcardharA=xrancard|Ax