Metamath Proof Explorer


Theorem harval3

Description: ( harA ) is the least cardinal that is greater than A . (Contributed by RP, 4-Nov-2023)

Ref Expression
Assertion harval3 A dom card har A = x ran card | A x

Proof

Step Hyp Ref Expression
1 harval2 A dom card har A = y On | A y
2 vex x V
3 2 a1i A dom card x V
4 elrncard x ran card x On y x ¬ y x
5 4 simplbi x ran card x On
6 5 anim1i x ran card A x x On A x
7 eleq1 y = x y On x On
8 breq2 y = x A y A x
9 7 8 anbi12d y = x y On A y x On A x
10 6 9 syl5ibr y = x x ran card A x y On A y
11 10 adantl A dom card y = x x ran card A x y On A y
12 ssidd A dom card x x
13 3 11 12 intabssd A dom card y | y On A y x | x ran card A x
14 vex y V
15 14 inex1 y card y V
16 15 a1i A dom card y card y V
17 oncardid y On card y y
18 17 ensymd y On y card y
19 sdomentr A y y card y A card y
20 19 a1i y On A y y card y A card y
21 18 20 mpan2d y On A y A card y
22 df-card card = x V y On | y x
23 22 funmpt2 Fun card
24 onenon y On y dom card
25 fvelrn Fun card y dom card card y ran card
26 23 24 25 sylancr y On card y ran card
27 21 26 jctild y On A y card y ran card A card y
28 27 adantl x = y card y y On A y card y ran card A card y
29 simpl x = y card y y On x = y card y
30 cardonle y On card y y
31 30 adantl x = y card y y On card y y
32 sseqin2 card y y y card y = card y
33 31 32 sylib x = y card y y On y card y = card y
34 29 33 eqtrd x = y card y y On x = card y
35 eleq1 x = card y x ran card card y ran card
36 breq2 x = card y A x A card y
37 35 36 anbi12d x = card y x ran card A x card y ran card A card y
38 34 37 syl x = y card y y On x ran card A x card y ran card A card y
39 28 38 sylibrd x = y card y y On A y x ran card A x
40 39 expimpd x = y card y y On A y x ran card A x
41 40 adantl A dom card x = y card y y On A y x ran card A x
42 inss1 y card y y
43 42 a1i A dom card y card y y
44 16 41 43 intabssd A dom card x | x ran card A x y | y On A y
45 13 44 eqssd A dom card y | y On A y = x | x ran card A x
46 df-rab y On | A y = y | y On A y
47 46 inteqi y On | A y = y | y On A y
48 df-rab x ran card | A x = x | x ran card A x
49 48 inteqi x ran card | A x = x | x ran card A x
50 45 47 49 3eqtr4g A dom card y On | A y = x ran card | A x
51 1 50 eqtrd A dom card har A = x ran card | A x