| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ramval.c |  |-  C = ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) | 
						
							| 2 | 1 | hashbcval |  |-  ( ( A e. Fin /\ N e. NN0 ) -> ( A C N ) = { x e. ~P A | ( # ` x ) = N } ) | 
						
							| 3 | 2 | fveq2d |  |-  ( ( A e. Fin /\ N e. NN0 ) -> ( # ` ( A C N ) ) = ( # ` { x e. ~P A | ( # ` x ) = N } ) ) | 
						
							| 4 |  | nn0z |  |-  ( N e. NN0 -> N e. ZZ ) | 
						
							| 5 |  | hashbc |  |-  ( ( A e. Fin /\ N e. ZZ ) -> ( ( # ` A ) _C N ) = ( # ` { x e. ~P A | ( # ` x ) = N } ) ) | 
						
							| 6 | 4 5 | sylan2 |  |-  ( ( A e. Fin /\ N e. NN0 ) -> ( ( # ` A ) _C N ) = ( # ` { x e. ~P A | ( # ` x ) = N } ) ) | 
						
							| 7 | 3 6 | eqtr4d |  |-  ( ( A e. Fin /\ N e. NN0 ) -> ( # ` ( A C N ) ) = ( ( # ` A ) _C N ) ) |