| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ramval.c |  |-  C = ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) | 
						
							| 2 |  | 0fi |  |-  (/) e. Fin | 
						
							| 3 |  | nnnn0 |  |-  ( N e. NN -> N e. NN0 ) | 
						
							| 4 | 1 | hashbc2 |  |-  ( ( (/) e. Fin /\ N e. NN0 ) -> ( # ` ( (/) C N ) ) = ( ( # ` (/) ) _C N ) ) | 
						
							| 5 | 2 3 4 | sylancr |  |-  ( N e. NN -> ( # ` ( (/) C N ) ) = ( ( # ` (/) ) _C N ) ) | 
						
							| 6 |  | hash0 |  |-  ( # ` (/) ) = 0 | 
						
							| 7 | 6 | oveq1i |  |-  ( ( # ` (/) ) _C N ) = ( 0 _C N ) | 
						
							| 8 |  | bc0k |  |-  ( N e. NN -> ( 0 _C N ) = 0 ) | 
						
							| 9 | 7 8 | eqtrid |  |-  ( N e. NN -> ( ( # ` (/) ) _C N ) = 0 ) | 
						
							| 10 | 5 9 | eqtrd |  |-  ( N e. NN -> ( # ` ( (/) C N ) ) = 0 ) | 
						
							| 11 |  | ovex |  |-  ( (/) C N ) e. _V | 
						
							| 12 |  | hasheq0 |  |-  ( ( (/) C N ) e. _V -> ( ( # ` ( (/) C N ) ) = 0 <-> ( (/) C N ) = (/) ) ) | 
						
							| 13 | 11 12 | ax-mp |  |-  ( ( # ` ( (/) C N ) ) = 0 <-> ( (/) C N ) = (/) ) | 
						
							| 14 | 10 13 | sylib |  |-  ( N e. NN -> ( (/) C N ) = (/) ) |