| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ramval.c | ⊢ 𝐶  =  ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) | 
						
							| 2 |  | 0fi | ⊢ ∅  ∈  Fin | 
						
							| 3 |  | nnnn0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ0 ) | 
						
							| 4 | 1 | hashbc2 | ⊢ ( ( ∅  ∈  Fin  ∧  𝑁  ∈  ℕ0 )  →  ( ♯ ‘ ( ∅ 𝐶 𝑁 ) )  =  ( ( ♯ ‘ ∅ ) C 𝑁 ) ) | 
						
							| 5 | 2 3 4 | sylancr | ⊢ ( 𝑁  ∈  ℕ  →  ( ♯ ‘ ( ∅ 𝐶 𝑁 ) )  =  ( ( ♯ ‘ ∅ ) C 𝑁 ) ) | 
						
							| 6 |  | hash0 | ⊢ ( ♯ ‘ ∅ )  =  0 | 
						
							| 7 | 6 | oveq1i | ⊢ ( ( ♯ ‘ ∅ ) C 𝑁 )  =  ( 0 C 𝑁 ) | 
						
							| 8 |  | bc0k | ⊢ ( 𝑁  ∈  ℕ  →  ( 0 C 𝑁 )  =  0 ) | 
						
							| 9 | 7 8 | eqtrid | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ♯ ‘ ∅ ) C 𝑁 )  =  0 ) | 
						
							| 10 | 5 9 | eqtrd | ⊢ ( 𝑁  ∈  ℕ  →  ( ♯ ‘ ( ∅ 𝐶 𝑁 ) )  =  0 ) | 
						
							| 11 |  | ovex | ⊢ ( ∅ 𝐶 𝑁 )  ∈  V | 
						
							| 12 |  | hasheq0 | ⊢ ( ( ∅ 𝐶 𝑁 )  ∈  V  →  ( ( ♯ ‘ ( ∅ 𝐶 𝑁 ) )  =  0  ↔  ( ∅ 𝐶 𝑁 )  =  ∅ ) ) | 
						
							| 13 | 11 12 | ax-mp | ⊢ ( ( ♯ ‘ ( ∅ 𝐶 𝑁 ) )  =  0  ↔  ( ∅ 𝐶 𝑁 )  =  ∅ ) | 
						
							| 14 | 10 13 | sylib | ⊢ ( 𝑁  ∈  ℕ  →  ( ∅ 𝐶 𝑁 )  =  ∅ ) |