Metamath Proof Explorer


Theorem hashbc2

Description: The size of the binomial set is the binomial coefficient. (Contributed by Mario Carneiro, 20-Apr-2015)

Ref Expression
Hypothesis ramval.c C=aV,i0b𝒫a|b=i
Assertion hashbc2 AFinN0ACN=(AN)

Proof

Step Hyp Ref Expression
1 ramval.c C=aV,i0b𝒫a|b=i
2 1 hashbcval AFinN0ACN=x𝒫A|x=N
3 2 fveq2d AFinN0ACN=x𝒫A|x=N
4 nn0z N0N
5 hashbc AFinN(AN)=x𝒫A|x=N
6 4 5 sylan2 AFinN0(AN)=x𝒫A|x=N
7 3 6 eqtr4d AFinN0ACN=(AN)