Description: The base set of Hilbert space. This theorem provides an independent proof of df-hba (see comments in that definition). (Contributed by NM, 17-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hhnv.1 | |- U = <. <. +h , .h >. , normh >. |
|
| Assertion | hhba | |- ~H = ( BaseSet ` U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhnv.1 | |- U = <. <. +h , .h >. , normh >. |
|
| 2 | hilablo | |- +h e. AbelOp |
|
| 3 | ablogrpo | |- ( +h e. AbelOp -> +h e. GrpOp ) |
|
| 4 | 2 3 | ax-mp | |- +h e. GrpOp |
| 5 | ax-hfvadd | |- +h : ( ~H X. ~H ) --> ~H |
|
| 6 | 5 | fdmi | |- dom +h = ( ~H X. ~H ) |
| 7 | 4 6 | grporn | |- ~H = ran +h |
| 8 | eqid | |- ( BaseSet ` U ) = ( BaseSet ` U ) |
|
| 9 | 1 | hhva | |- +h = ( +v ` U ) |
| 10 | 8 9 | bafval | |- ( BaseSet ` U ) = ran +h |
| 11 | 7 10 | eqtr4i | |- ~H = ( BaseSet ` U ) |