Description: The Hilbert space structure is a complex Hilbert space. (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hhhl.1 | |- U = <. <. +h , .h >. , normh >. |
|
| Assertion | hhhl | |- U e. CHilOLD |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhhl.1 | |- U = <. <. +h , .h >. , normh >. |
|
| 2 | 1 | hhnv | |- U e. NrmCVec |
| 3 | eqid | |- ( IndMet ` U ) = ( IndMet ` U ) |
|
| 4 | 1 3 | hhcms | |- ( IndMet ` U ) e. ( CMet ` ~H ) |
| 5 | 1 | hhba | |- ~H = ( BaseSet ` U ) |
| 6 | 5 3 | iscbn | |- ( U e. CBan <-> ( U e. NrmCVec /\ ( IndMet ` U ) e. ( CMet ` ~H ) ) ) |
| 7 | 2 4 6 | mpbir2an | |- U e. CBan |
| 8 | 1 | hhph | |- U e. CPreHilOLD |
| 9 | ishlo | |- ( U e. CHilOLD <-> ( U e. CBan /\ U e. CPreHilOLD ) ) |
|
| 10 | 7 8 9 | mpbir2an | |- U e. CHilOLD |