| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hicl |
|- ( ( A e. ~H /\ B e. ~H ) -> ( A .ih B ) e. CC ) |
| 2 |
|
cjreb |
|- ( ( A .ih B ) e. CC -> ( ( A .ih B ) e. RR <-> ( * ` ( A .ih B ) ) = ( A .ih B ) ) ) |
| 3 |
1 2
|
syl |
|- ( ( A e. ~H /\ B e. ~H ) -> ( ( A .ih B ) e. RR <-> ( * ` ( A .ih B ) ) = ( A .ih B ) ) ) |
| 4 |
|
eqcom |
|- ( ( * ` ( A .ih B ) ) = ( A .ih B ) <-> ( A .ih B ) = ( * ` ( A .ih B ) ) ) |
| 5 |
3 4
|
bitrdi |
|- ( ( A e. ~H /\ B e. ~H ) -> ( ( A .ih B ) e. RR <-> ( A .ih B ) = ( * ` ( A .ih B ) ) ) ) |
| 6 |
|
ax-his1 |
|- ( ( B e. ~H /\ A e. ~H ) -> ( B .ih A ) = ( * ` ( A .ih B ) ) ) |
| 7 |
6
|
ancoms |
|- ( ( A e. ~H /\ B e. ~H ) -> ( B .ih A ) = ( * ` ( A .ih B ) ) ) |
| 8 |
7
|
eqeq2d |
|- ( ( A e. ~H /\ B e. ~H ) -> ( ( A .ih B ) = ( B .ih A ) <-> ( A .ih B ) = ( * ` ( A .ih B ) ) ) ) |
| 9 |
5 8
|
bitr4d |
|- ( ( A e. ~H /\ B e. ~H ) -> ( ( A .ih B ) e. RR <-> ( A .ih B ) = ( B .ih A ) ) ) |