Metamath Proof Explorer


Theorem hleqnid

Description: The endpoint does not belong to the half-line. (Contributed by Thierry Arnoux, 3-Mar-2020)

Ref Expression
Hypotheses ishlg.p
|- P = ( Base ` G )
ishlg.i
|- I = ( Itv ` G )
ishlg.k
|- K = ( hlG ` G )
ishlg.a
|- ( ph -> A e. P )
ishlg.b
|- ( ph -> B e. P )
ishlg.c
|- ( ph -> C e. P )
hlln.1
|- ( ph -> G e. TarskiG )
Assertion hleqnid
|- ( ph -> -. A ( K ` A ) B )

Proof

Step Hyp Ref Expression
1 ishlg.p
 |-  P = ( Base ` G )
2 ishlg.i
 |-  I = ( Itv ` G )
3 ishlg.k
 |-  K = ( hlG ` G )
4 ishlg.a
 |-  ( ph -> A e. P )
5 ishlg.b
 |-  ( ph -> B e. P )
6 ishlg.c
 |-  ( ph -> C e. P )
7 hlln.1
 |-  ( ph -> G e. TarskiG )
8 neirr
 |-  -. A =/= A
9 8 a1i
 |-  ( ph -> -. A =/= A )
10 4 adantr
 |-  ( ( ph /\ A ( K ` A ) B ) -> A e. P )
11 5 adantr
 |-  ( ( ph /\ A ( K ` A ) B ) -> B e. P )
12 7 adantr
 |-  ( ( ph /\ A ( K ` A ) B ) -> G e. TarskiG )
13 simpr
 |-  ( ( ph /\ A ( K ` A ) B ) -> A ( K ` A ) B )
14 1 2 3 10 11 10 12 13 hlne1
 |-  ( ( ph /\ A ( K ` A ) B ) -> A =/= A )
15 9 14 mtand
 |-  ( ph -> -. A ( K ` A ) B )