| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ishlg.p |
|- P = ( Base ` G ) |
| 2 |
|
ishlg.i |
|- I = ( Itv ` G ) |
| 3 |
|
ishlg.k |
|- K = ( hlG ` G ) |
| 4 |
|
ishlg.a |
|- ( ph -> A e. P ) |
| 5 |
|
ishlg.b |
|- ( ph -> B e. P ) |
| 6 |
|
ishlg.c |
|- ( ph -> C e. P ) |
| 7 |
|
hlln.1 |
|- ( ph -> G e. TarskiG ) |
| 8 |
|
neirr |
|- -. A =/= A |
| 9 |
8
|
a1i |
|- ( ph -> -. A =/= A ) |
| 10 |
4
|
adantr |
|- ( ( ph /\ A ( K ` A ) B ) -> A e. P ) |
| 11 |
5
|
adantr |
|- ( ( ph /\ A ( K ` A ) B ) -> B e. P ) |
| 12 |
7
|
adantr |
|- ( ( ph /\ A ( K ` A ) B ) -> G e. TarskiG ) |
| 13 |
|
simpr |
|- ( ( ph /\ A ( K ` A ) B ) -> A ( K ` A ) B ) |
| 14 |
1 2 3 10 11 10 12 13
|
hlne1 |
|- ( ( ph /\ A ( K ` A ) B ) -> A =/= A ) |
| 15 |
9 14
|
mtand |
|- ( ph -> -. A ( K ` A ) B ) |