| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ishlg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
ishlg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 3 |
|
ishlg.k |
⊢ 𝐾 = ( hlG ‘ 𝐺 ) |
| 4 |
|
ishlg.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 5 |
|
ishlg.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 6 |
|
ishlg.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 7 |
|
hlln.1 |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 8 |
|
neirr |
⊢ ¬ 𝐴 ≠ 𝐴 |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → ¬ 𝐴 ≠ 𝐴 ) |
| 10 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ( 𝐾 ‘ 𝐴 ) 𝐵 ) → 𝐴 ∈ 𝑃 ) |
| 11 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ( 𝐾 ‘ 𝐴 ) 𝐵 ) → 𝐵 ∈ 𝑃 ) |
| 12 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ( 𝐾 ‘ 𝐴 ) 𝐵 ) → 𝐺 ∈ TarskiG ) |
| 13 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ( 𝐾 ‘ 𝐴 ) 𝐵 ) → 𝐴 ( 𝐾 ‘ 𝐴 ) 𝐵 ) |
| 14 |
1 2 3 10 11 10 12 13
|
hlne1 |
⊢ ( ( 𝜑 ∧ 𝐴 ( 𝐾 ‘ 𝐴 ) 𝐵 ) → 𝐴 ≠ 𝐴 ) |
| 15 |
9 14
|
mtand |
⊢ ( 𝜑 → ¬ 𝐴 ( 𝐾 ‘ 𝐴 ) 𝐵 ) |