Step |
Hyp |
Ref |
Expression |
1 |
|
hlhil0.h |
|- H = ( LHyp ` K ) |
2 |
|
hlhil0.l |
|- L = ( ( DVecH ` K ) ` W ) |
3 |
|
hlhil0.u |
|- U = ( ( HLHil ` K ) ` W ) |
4 |
|
hlhil0.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
5 |
|
hlhillsm.a |
|- .(+) = ( LSSum ` L ) |
6 |
|
eqidd |
|- ( ph -> ( Base ` L ) = ( Base ` L ) ) |
7 |
|
eqid |
|- ( Base ` L ) = ( Base ` L ) |
8 |
1 3 4 2 7
|
hlhilbase |
|- ( ph -> ( Base ` L ) = ( Base ` U ) ) |
9 |
|
eqid |
|- ( +g ` L ) = ( +g ` L ) |
10 |
1 3 4 2 9
|
hlhilplus |
|- ( ph -> ( +g ` L ) = ( +g ` U ) ) |
11 |
10
|
oveqdr |
|- ( ( ph /\ ( x e. ( Base ` L ) /\ y e. ( Base ` L ) ) ) -> ( x ( +g ` L ) y ) = ( x ( +g ` U ) y ) ) |
12 |
2
|
fvexi |
|- L e. _V |
13 |
12
|
a1i |
|- ( ph -> L e. _V ) |
14 |
3
|
fvexi |
|- U e. _V |
15 |
14
|
a1i |
|- ( ph -> U e. _V ) |
16 |
6 8 11 13 15
|
lsmpropd |
|- ( ph -> ( LSSum ` L ) = ( LSSum ` U ) ) |
17 |
5 16
|
syl5eq |
|- ( ph -> .(+) = ( LSSum ` U ) ) |