Step |
Hyp |
Ref |
Expression |
1 |
|
hlhilbase.h |
|- H = ( LHyp ` K ) |
2 |
|
hlhilbase.u |
|- U = ( ( HLHil ` K ) ` W ) |
3 |
|
hlhilbase.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
4 |
|
hlhilbase.l |
|- L = ( ( DVecH ` K ) ` W ) |
5 |
|
hlhilbase.m |
|- M = ( Base ` L ) |
6 |
5
|
fvexi |
|- M e. _V |
7 |
|
eqid |
|- ( { <. ( Base ` ndx ) , M >. , <. ( +g ` ndx ) , ( +g ` L ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` K ) ` W ) sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` L ) >. , <. ( .i ` ndx ) , ( x e. M , y e. M |-> ( ( ( ( HDMap ` K ) ` W ) ` y ) ` x ) ) >. } ) = ( { <. ( Base ` ndx ) , M >. , <. ( +g ` ndx ) , ( +g ` L ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` K ) ` W ) sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` L ) >. , <. ( .i ` ndx ) , ( x e. M , y e. M |-> ( ( ( ( HDMap ` K ) ` W ) ` y ) ` x ) ) >. } ) |
8 |
7
|
phlbase |
|- ( M e. _V -> M = ( Base ` ( { <. ( Base ` ndx ) , M >. , <. ( +g ` ndx ) , ( +g ` L ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` K ) ` W ) sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` L ) >. , <. ( .i ` ndx ) , ( x e. M , y e. M |-> ( ( ( ( HDMap ` K ) ` W ) ` y ) ` x ) ) >. } ) ) ) |
9 |
6 8
|
ax-mp |
|- M = ( Base ` ( { <. ( Base ` ndx ) , M >. , <. ( +g ` ndx ) , ( +g ` L ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` K ) ` W ) sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` L ) >. , <. ( .i ` ndx ) , ( x e. M , y e. M |-> ( ( ( ( HDMap ` K ) ` W ) ` y ) ` x ) ) >. } ) ) |
10 |
|
eqid |
|- ( +g ` L ) = ( +g ` L ) |
11 |
|
eqid |
|- ( ( EDRing ` K ) ` W ) = ( ( EDRing ` K ) ` W ) |
12 |
|
eqid |
|- ( ( HGMap ` K ) ` W ) = ( ( HGMap ` K ) ` W ) |
13 |
|
eqid |
|- ( ( ( EDRing ` K ) ` W ) sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) = ( ( ( EDRing ` K ) ` W ) sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) |
14 |
|
eqid |
|- ( .s ` L ) = ( .s ` L ) |
15 |
|
eqid |
|- ( ( HDMap ` K ) ` W ) = ( ( HDMap ` K ) ` W ) |
16 |
|
eqid |
|- ( x e. M , y e. M |-> ( ( ( ( HDMap ` K ) ` W ) ` y ) ` x ) ) = ( x e. M , y e. M |-> ( ( ( ( HDMap ` K ) ` W ) ` y ) ` x ) ) |
17 |
1 2 4 5 10 11 12 13 14 15 16 3
|
hlhilset |
|- ( ph -> U = ( { <. ( Base ` ndx ) , M >. , <. ( +g ` ndx ) , ( +g ` L ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` K ) ` W ) sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` L ) >. , <. ( .i ` ndx ) , ( x e. M , y e. M |-> ( ( ( ( HDMap ` K ) ` W ) ` y ) ` x ) ) >. } ) ) |
18 |
17
|
fveq2d |
|- ( ph -> ( Base ` U ) = ( Base ` ( { <. ( Base ` ndx ) , M >. , <. ( +g ` ndx ) , ( +g ` L ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` K ) ` W ) sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` L ) >. , <. ( .i ` ndx ) , ( x e. M , y e. M |-> ( ( ( ( HDMap ` K ) ` W ) ` y ) ` x ) ) >. } ) ) ) |
19 |
9 18
|
eqtr4id |
|- ( ph -> M = ( Base ` U ) ) |