Metamath Proof Explorer


Theorem hlhilbase

Description: The base set of the final constructed Hilbert space. (Contributed by NM, 21-Jun-2015) (Revised by Mario Carneiro, 28-Jun-2015)

Ref Expression
Hypotheses hlhilbase.h H = LHyp K
hlhilbase.u U = HLHil K W
hlhilbase.k φ K HL W H
hlhilbase.l L = DVecH K W
hlhilbase.m M = Base L
Assertion hlhilbase φ M = Base U

Proof

Step Hyp Ref Expression
1 hlhilbase.h H = LHyp K
2 hlhilbase.u U = HLHil K W
3 hlhilbase.k φ K HL W H
4 hlhilbase.l L = DVecH K W
5 hlhilbase.m M = Base L
6 5 fvexi M V
7 eqid Base ndx M + ndx + L Scalar ndx EDRing K W sSet * ndx HGMap K W ndx L 𝑖 ndx x M , y M HDMap K W y x = Base ndx M + ndx + L Scalar ndx EDRing K W sSet * ndx HGMap K W ndx L 𝑖 ndx x M , y M HDMap K W y x
8 7 phlbase M V M = Base Base ndx M + ndx + L Scalar ndx EDRing K W sSet * ndx HGMap K W ndx L 𝑖 ndx x M , y M HDMap K W y x
9 6 8 ax-mp M = Base Base ndx M + ndx + L Scalar ndx EDRing K W sSet * ndx HGMap K W ndx L 𝑖 ndx x M , y M HDMap K W y x
10 eqid + L = + L
11 eqid EDRing K W = EDRing K W
12 eqid HGMap K W = HGMap K W
13 eqid EDRing K W sSet * ndx HGMap K W = EDRing K W sSet * ndx HGMap K W
14 eqid L = L
15 eqid HDMap K W = HDMap K W
16 eqid x M , y M HDMap K W y x = x M , y M HDMap K W y x
17 1 2 4 5 10 11 12 13 14 15 16 3 hlhilset φ U = Base ndx M + ndx + L Scalar ndx EDRing K W sSet * ndx HGMap K W ndx L 𝑖 ndx x M , y M HDMap K W y x
18 17 fveq2d φ Base U = Base Base ndx M + ndx + L Scalar ndx EDRing K W sSet * ndx HGMap K W ndx L 𝑖 ndx x M , y M HDMap K W y x
19 9 18 eqtr4id φ M = Base U