| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hlhilset.h |
|
| 2 |
|
hlhilset.l |
|
| 3 |
|
hlhilset.u |
|
| 4 |
|
hlhilset.v |
|
| 5 |
|
hlhilset.p |
|
| 6 |
|
hlhilset.e |
|
| 7 |
|
hlhilset.g |
|
| 8 |
|
hlhilset.r |
|
| 9 |
|
hlhilset.t |
|
| 10 |
|
hlhilset.s |
|
| 11 |
|
hlhilset.i |
|
| 12 |
|
hlhilset.k |
|
| 13 |
|
elex |
|
| 14 |
13
|
adantr |
|
| 15 |
12 14
|
syl |
|
| 16 |
1
|
fvexi |
|
| 17 |
16
|
mptex |
|
| 18 |
|
nfcv |
|
| 19 |
|
nfcv |
|
| 20 |
|
nfcsb1v |
|
| 21 |
19 20
|
nfmpt |
|
| 22 |
|
fveq2 |
|
| 23 |
22 1
|
eqtr4di |
|
| 24 |
|
csbeq1a |
|
| 25 |
23 24
|
mpteq12dv |
|
| 26 |
|
df-hlhil |
|
| 27 |
18 21 25 26
|
fvmptf |
|
| 28 |
15 17 27
|
sylancl |
|
| 29 |
15
|
adantr |
|
| 30 |
|
fvexd |
|
| 31 |
|
fvexd |
|
| 32 |
|
id |
|
| 33 |
|
id |
|
| 34 |
|
simpr |
|
| 35 |
34
|
fveq2d |
|
| 36 |
|
simplr |
|
| 37 |
35 36
|
fveq12d |
|
| 38 |
37 3
|
eqtr4di |
|
| 39 |
33 38
|
sylan9eqr |
|
| 40 |
39
|
fveq2d |
|
| 41 |
40 4
|
eqtr4di |
|
| 42 |
32 41
|
sylan9eqr |
|
| 43 |
42
|
opeq2d |
|
| 44 |
39
|
adantr |
|
| 45 |
44
|
fveq2d |
|
| 46 |
45 5
|
eqtr4di |
|
| 47 |
46
|
opeq2d |
|
| 48 |
34
|
fveq2d |
|
| 49 |
48 36
|
fveq12d |
|
| 50 |
49 6
|
eqtr4di |
|
| 51 |
34
|
fveq2d |
|
| 52 |
51 36
|
fveq12d |
|
| 53 |
52 7
|
eqtr4di |
|
| 54 |
53
|
opeq2d |
|
| 55 |
50 54
|
oveq12d |
|
| 56 |
55 8
|
eqtr4di |
|
| 57 |
56
|
opeq2d |
|
| 58 |
57
|
ad2antrr |
|
| 59 |
43 47 58
|
tpeq123d |
|
| 60 |
44
|
fveq2d |
|
| 61 |
60 9
|
eqtr4di |
|
| 62 |
61
|
opeq2d |
|
| 63 |
34
|
fveq2d |
|
| 64 |
63 36
|
fveq12d |
|
| 65 |
64 10
|
eqtr4di |
|
| 66 |
65
|
ad2antrr |
|
| 67 |
66
|
fveq1d |
|
| 68 |
67
|
fveq1d |
|
| 69 |
42 42 68
|
mpoeq123dv |
|
| 70 |
69 11
|
eqtr4di |
|
| 71 |
70
|
opeq2d |
|
| 72 |
62 71
|
preq12d |
|
| 73 |
59 72
|
uneq12d |
|
| 74 |
31 73
|
csbied |
|
| 75 |
30 74
|
csbied |
|
| 76 |
29 75
|
csbied |
|
| 77 |
12
|
simprd |
|
| 78 |
|
tpex |
|
| 79 |
|
prex |
|
| 80 |
78 79
|
unex |
|
| 81 |
80
|
a1i |
|
| 82 |
28 76 77 81
|
fvmptd |
|
| 83 |
2 82
|
eqtrid |
|